[1] |
LIU J, ZENG X, LI C, et al. Landing site selection and overview of China’s lunar landing missions[J]. Space Science Reviews, 2021, 217(1): 6.
|
[2] |
LIU J, REN X, YAN W, et al. Descent trajectory reconstruction and landing site positioning of chang’E-4 on the lunar farside[J]. Nature Communications, 2019, 10(1): 4229.
|
[3] |
XIE M, XIAO Z, XU L, et al. Change in the Earth-moon impactor population at about 3.5 billion years ago[J]. Nature Astronomy, 2020, 5(2): 128-133.
|
[4] |
LI Y, FA W, JIA B. Morphological characterization of decimeter- to hectometer-scale impact craters at the chang’E-3/4/5 landing sites[J]. Journal of Geophysical Research: Planets, 2023, 128(4): e2022JE007703.
|
[5] |
LIU S, DU K, TONG X, et al. In-situ mapping of iron and titanium with the visible and near-infrared image spectrometer (VNIS) along the yutu-2 rover traverse on the farside of the moon[J]. Icarus, 2024, 412: 116003.
|
[6] |
CHAKRABORTY T, PANDEY D Kr, MEHRA R, et al. Polarimetric characterization of chandrayaan-3 landing site near lunar south pole using high resolution chandrayaan-2 DFSAR data[J]. Planetary and S- ace Science, 2024, 251: 105956.
|
[7] |
ZHANG T, PANG Y, ZENG T, et al. Robotic drilling for the chinese chang’E 5 lunar sample-return mission[J]. International Journal of Robotics Research, 2023, 42(8): 586-613.
|
[8] |
ZHONG G, YI X, GAO S, et al. Polycyclic aromatics in the chang’E 5 lunar soils[J]. Nature Communications, 2025, 16(1): 3622.
|
[9] |
HUMM D C, TSCHIMMEL M, BRYLOW S M, et al. Flight calibration of the LROC narrow angle camera[J]. Space Science Reviews, 2016, 200(1-4): 431-473.
|
[10] |
DI K, XU B, LIU B, et al. Geopositioning precision analysis of multiple image triangulation using lro nac lunar images[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2016, XLI-B4: 369-374.
|
[11] |
岳宗玉, 史珂, 邸凯昌, 等. 撞击坑研究进展与展望[J]. Scientia Sinica Terrae, 2023, 53(11): 2482-2493.
|
[12] |
QIAN Y, XIAO L, ZHAO J, et al. First magnetic and spectroscopic constraints on attenuated space weathering at the chang’e-5 landing site[J]. Icarus, 2024, 410: 115892.
|
[13] |
DI K, JIA M, XIN X, et al. High-resolution large-area digital orthophoto map generation using LROC NAC images[J]. Photogrammetric Engineering and Remote Sensing, 2019, 85(7): 481-491.
|
[14] |
JIA M, DI K, YUE Z, et al. Multi-scale morphologic investigation of craters in the chang’e-4 landing area[J]. Icarus, 2021, 355: 114164.
|
[15] |
LIU W C, WU B. An integrated photogrammetric and photoclinometric approach for illumination-invariant pixel-resolution 3D mapping of the lunar surface[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 159: 153-168.
|
[16] |
VELICHKO S, KOROKHIN V, VELIKODSKY Y, et al. Multiphase photoclinometry as applied to the lunar photometry with LROC NAC data[J]. Planetary and Space Science, 2024, 246: 105914.
|
[17] |
WANG Z, YI J, DING H, et al. Nonlinear circumference-based robust ellipse detection in low-SNR images[J]. Image and Vision Computing, 2024, 144: 104968.
|
[18] |
YANG J, KANG Z. Bayesian network-based extraction of lunar impact craters from optical images and DEM data[J]. Advances in Space Research, 2019, 63(11): 3721-3737.
|
[19] |
MA P, LI C, RAHAMAN M M, et al. A state-of-the-art survey of object detection techniques in microorganism image analysis: from classical methods to deep learning approaches[J]. Artificial Intelligence Review, 2023, 56(2): 1627-1698.
|
[20] |
MOHAN G, RAJA M S, SWATHI S, et al. A novel breast cancer diagnostic using convolutional squared deviation neural network classifier with Al-biruni earth radius optimization in medical IoT system[J]. e-Prime Advances in Electrical Engineering, Electronics and Energy, 2024, 7: 100440.
|
[21] |
PRAMANIK A, SARKER S, SARKAR S, et al. FGI-CogViT: fuzzy granule-based interpretable cognitive vision transformer for early detection of alzheimer’s disease using MRI scan images[J]. Information Systems Frontiers, 2024.
|
[22] |
AL-ALI A, ELHARROUSS O, QIDWAI U, et al. ANFIS-net for automatic detection of COVID-19[J]. Scientific Reports, 2021, 11(1): 17318.
|
[23] |
YAP F Y, VARGHESE B A, CEN S Y, et al. Shape and texture-based radiomics signature on CT effectively discriminates benign from malignant renal masses[J]. European Radiology, 2021, 31(2): 1011-1021.
|
[24] |
HERDIANA I, KAMAL M A, TRIYANI, et al. A more precise elbow method for optimum K-means clustering[A]. arXiv, 2025.
|
[25] |
YUAN C, YANG H. Research on K-value selection method of K-means clustering algorithm[J]. Open access Journal of multidisciplinary science, 2019, 2(2): 226-235.
|
[26] |
HIGGINS S, DUTTA S, KAKAR R S. Machine learning for lumbar and pelvis kinematics clustering[J]. Computer Methods in Biomechanics and Biomedical Engineering, 2024, 27(10): 1332-1345.
|
[27] |
CHEN Y, LIU L, ZHENG D, et al. Estimating travellers’ value when purchasing auxiliary services in the airline industry based on the RFM model[J]. Journal of Retailing and Consumer Services, 2023, 74: 103433.
|
[28] |
MARKANTONIS I, VLACHOGIANNIS D, SFETSOS A, et al. Atmospheric preconditions investigation of wet-cold compound events in Greece between 1980 and 2004[J]. Theoretical and Applied Climatology, 2024, 155(8): 8151-8163.
|
[29] |
REBULI K B, OZELLA L, VANNESCHI L, et al. Multi-algorithm clustering analysis for characterizing cow productivity on automatic milking systems over lactation periods[J]. Computers and Electronics in Agriculture, 2023, 211: 108002.
|
[30] |
LARA-NAVARRA P, SÁNCHEZ-PÉREZ E A, FERRER-SAPENA A, et al. Singularity in higher education: methods for detection and classification[J]. Expert Systems with Applications, 2024, 239: 122306.
|
[31] |
RAYA-TAPIA A Y, SÁNCHEZ-ZARCO X G, CANSINO-LOEZA B, et al. A typology country framework to evaluate the SDG progress and food waste reduction based on clustering analysis[J]. Trends in Food Science & Technology, 2024, 143: 104304.
|
[32] |
BŁAŻEJEWSKI W, BARCIKOWSKI M, STOSIAK M, et al. A novel design of a low-pressure composite vessel with inspection opening - design, manufacturing and testing[J]. Alexandria Engineering Journal, 2024, 91: 442-456.
|
[33] |
ZHOU Y, YAN L, ZHAO H, et al. A new classification and index calibration of lunar impact craters for digital terrain analysis[J]. Astronomy Reports, 2019, 63(12): 1069-1079.
|
[34] |
SCAIONI M, YORDANOV V, BRUNETTI M T, et al. Recognition of landslides in lunar impact craters[J]. European Journal of Remote Sensing, 2018, 51(1): 47-61.
|
[35] |
GEWERS F L, FERREIRA G R, ARRUDA H F D, et al. Principal component analysis: a natural approach to data exploration[J]. ACM Computing Surveys, 2022, 54(4): 1-34.
|
[36] |
HEINRICHS F. GT-PCA: effective and interpretable dimensionality reduction with general transform-invariant principal component analysis[A]. arXiv, 2024.
|
[37] |
CHITRA G, HARI GANESH S. Cultural algorithm based principal component analysis (CA-PCA) approach for handling high dimensional data[J]. The Scientific Temper, 2024, 15(spl-1): 86-96.
|
[38] |
HOLSAPPLE K A. Geologic collisions: impact cratering[J]. Science, 1989, 245(4923): 1261-1262.
pmid: 17747890
|
[39] |
LI C L, MU L L, ZOU X D, et al. Analysis of the geomorphology surrounding the chang’e-3 landing site[J]. Research in Astronomy and Astrophysics, 2014, 14(12): 1514-1529.
|