数据与计算发展前沿 ›› 2025, Vol. 7 ›› Issue (4): 89-100.

CSTR: 32002.14.jfdc.CN10-1649/TP.2025.04.008

doi: 10.11871/jfdc.issn.2096-742X.2025.04.008

• 专刊:空间科学大数据智能算法模型与工具 • 上一篇    下一篇

月球撞击坑形态特征的多维度聚类方法研究

刘方超1(),张立2,郭弟均3,陈剑1,吕英波1,*(),凌宗成1,李博然2,李心语2,马云龙1   

  1. 1.山东大学空间科学与技术学院, 山东 威海 264209
    2.山东大学机电与信息工程学院, 山东 威海 264209
    3.中国科学院空间科学中心北京 100190
  • 收稿日期:2023-12-29 出版日期:2025-08-20 发布日期:2025-08-21
  • 通讯作者: 吕英波
  • 作者简介:刘方超,山东大学空间科学与技术学院,博士研究生,主要研究方向为行星科学与大数据。
    本文中主要负责方法研究、实验设计与论文撰写。
    LIU Fangchao, is a Ph.D. candidate at the School of Space Science and Technology, Shandong University, with main research interests in planetary science and big data.
    In this paper, he is mainly responsible for methodological research, experimental design, and paper writing.
    E-mail: liufc@mail.sdu.edu.cn|吕英波,山东大学空间科学与技术学院,博士生导师,教授,博士。主要研究方向为空间科学数据分析、深度学习与数据挖掘、深空资源勘探与利用、空间太阳能利用、材料模拟与工程仿真等相关的科学研究与技术攻关工作。
    本文中主要负责方法设计、实验指导和论文撰写。
    LYU Yingbo, Ph.D., is a doctoral supervisor amd professor in the School of Space Science and Technology, Shandong University, with main research interests in planetary science and big data.
    In this paper, he is mainly responsible for method design, experimental guidance, and paper writing.
    E-mail: lyb@sdu.edu.cn
  • 基金资助:
    国家重点研发计划(2022YFF0711400);中国科学院国家空间科学中心开放课题(NSSDC2302001)

A Multi-Dimensional Clustering Method for Morphological Characterization of Lunar Impact Craters

LIU Fangchao1(),ZHANG Li2,GUO Dijun3,CHEN Jian1,LYU Yingbo1,*(),LING Zongcheng1,LI Boran2,LI Xinyu2,MA Yunlong1   

  1. 1. School of space scicence and technology, Shandong University, Weihai, Shandong 264209, China
    2. School of Mechanical, Electrical & Information Engineering, Shandong University, Weihai, Shandong 264209, China
    3. National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China
  • Received:2023-12-29 Online:2025-08-20 Published:2025-08-21
  • Contact: LYU Yingbo

摘要:

【目的】月球撞击坑是研究月球表面地质演化的重要标志,但是在高分辨率影像数据的支持下系统地对撞击坑进行分类和形态分析仍是一个重要的研究课题。【方法】本研究基于嫦娥三号着陆区的LROC NAC影像数据,提出了一种无需训练的k-means聚类方法,用于对形态特征相似的撞击坑进行自动分类。首先,从每张影像中提取均值、方差、熵、对比度和尺度五个维度的特征信息;其次,通过肘部法、轮廓系数法、Gap统计量和层次聚类四种方法确定了最佳的聚类数k=8;然后,将特征信息和k输入k-means算法,对撞击坑影像进行聚类;最后,通过绘制簇特征散点图和示例图像等方式对聚类结果进行可视化分析。【结果】基于聚类结果,对不同类型的撞击坑形态特征进行了详细分析,揭示了不同形态类别的撞击坑在月球表面地质演化中的潜在意义。【结论】本研究为月球撞击坑的自动化分类和形态特征分析提供了一种新的方法,为深入理解月球表面地质过程提供了重要支持。

关键词: 月球撞击坑, 聚类, k-means, 多维特征, 可视化

Abstract:

[Purpose] Lunar impact craters are important landmarks for studying the geologic evolution of the lunar surface, while systematically classifying and morphologically analyzing impact craters with the support of high-resolution image data is still an important research topic. [Method] In this study, based on the LROC NAC image data near the Chang'e-3 landing site, a k-means clustering method without training is proposed for automatic classification of impact craters with similar morphological features. Firstly, feature information in five dimensions, including mean, variance, entropy, contrast, and scale, is extracted from each image. Secondly, the optimal number of clusters, k=8, is determined by four methods, namely, the elbow method, the silhouette coefficient method, the Gap statistic, and hierarchical clustering. Thirdly, the feature information and the k are input into the k-means algorithm for clustering of the impact crater images. Finally, the images are clustered by drawing a cluster feature scatter plot and example images, etc. to visualize and analyze the clustering results. [Results] Based on the clustering results, the morphological features of different types of impact craters are analyzed in detail, revealing the potential significance of different morphological categories of impact craters in the geological evolution of the lunar surface. [Conclusion] This study provides a new method for the automated classification and morphological characterization of lunar impact craters, which provides important support for an in-depth understanding of lunar surface geological processes.

Key words: lunar impact crater, clustering, k-means, multidimensional features, visualization