数据与计算发展前沿 ›› 2026, Vol. 8 ›› Issue (1): 103-118.

CSTR: 32002.14.jfdc.CN10-1649/TP.2026.01.009

doi: 10.11871/jfdc.issn.2096-742X.2026.01.009

• 技术与应用 • 上一篇    下一篇

基于融合特征的VGAT-VGAN跨社交网络身份关联算法

潘语泉1(),袁得嵛1,2,*(),贾源1,王安然1   

  1. 1.中国人民公安大学,信息网络安全学院,北京 100038
    2.安全防范与风险评估公安部重点实验室,北京 102623
  • 收稿日期:2025-02-22 出版日期:2026-02-20 发布日期:2026-02-02
  • 通讯作者: 袁得嵛
  • 作者简介:潘语泉,中国人民公安大学,硕士研究生,研究方向为社交网络分析。
    本文主要工作为开展实验和论文撰写。
    PAN Yuquan is a master’s student at the People’s Public Security University of China. His research interest is social network analysis.
    In this paper, he is responsible for conducting experiments and write the paper.
    E-mail: 1870722711@qq.com|袁得嵛,中国人民公安大学,副教授,博士,研究方向为网络安全、社交网络分析。
    本文主要工作为制定研究计划。
    YUAN Deyu, Ph.D., is an associate professor at the People’ s Public Security University of China. His research interests include network security and social network analysis.
    In this paper, he is responsible for making the research plan.
    E-mail: yuandeyu@ppsuc.edu.cn
  • 基金资助:
    公安部技术研究计划重点项目(2024JSZ01);中国人民公安大学基本科研业务费重点项目(2022JKF02007)

VGAT-VGAN Across Social Networks User Identity Linkage Algorithm Based on Fusion Features

PAN Yuquan1(),YUAN Deyu1,2,*(),JIA Yuan1,WANG Anran1   

  1. 1. School of Information Network Security, People’s Security University of China, Beijing 100038, China
    2. Key Laboratory of Security and Risk Assessment, Ministry of Public Security, Beijing 102623, China
  • Received:2025-02-22 Online:2026-02-20 Published:2026-02-02
  • Contact: YUAN Deyu

摘要:

【目的】跨社交网络身份关联的研究,主要是判别来自不同社交网络的虚拟用户是否属于同一自然人。【方法】面对正负样本不均衡的情况,首先,提出了FD-Struc2vec和DW-Word2vec算法,分别用于提取节点的结构特征和用户名的文本特征;其次,通过VGAT优化结构特征表示,并将两类特征融合,形成了全新的用户特征向量表达方式,同时使用VGAN增加正样本数量;最后,提出了Feature-MLP,在神经网络中为结构特征和文本特征赋予不同权重,实现身份关联。【结果】与WLAlign等基线算法在真实数据集下比较,结果表明,在PRF1值3个指标中均存在10%以上的提高,证明了算法的有效性。【局限】由于社交网络拥有大量的用户和复杂的好友关系,加之算法结构的复杂性,导致整体的计算需求较大,算法的效率有待提升。

关键词: 跨社交网络, 身份关联, 特征融合, 数据增强, 深度学习

Abstract:

[Purpose] The research on user identification across social networks is mainly to determine whether virtual users from different social networks belong to the same natural person. [Methods] To address the imbalance between positive and negative samples, firstly, the FD-Struc2vec and DW-Word2vec algorithms are proposed to extract the structural features of nodes and the text features of user names, respectively. Secondly, VGAT is used to optimize the structural feature representation, and the two types of features are fused to form a new user feature vector representation. Meanwhile, VGAN is used to increase the number of positive samples. Finally, Feature-MLP is proposed, which assigns different weights to structural features and text features in the neural network to realize user identification. [Results] Compared with the baseline algorithms such as WLAlign in real data sets, the results show that there is an improvement of more than 10% in the three indexes of P, R and F1 value, which proves the effectiveness of the algorithm.[Limitations] Because social networks have a large number of users and complex friendships, coupled with the complexity of the algorithm structure, the overall computing demand is large, and the efficiency of the algorithm needs to be improved.

Key words: across social networks, user identity linkage, feature fusion, data enhancement, deep learning