| [1] |
汤景泰, 徐铭亮, 星辰. 立场、情感、注意力与选择性接触: 舆论极化的影响要素分析[J]. 国际新闻界, 2023, 45(1): 132-156.
|
| [2] |
ZHANG X, HE Z, ZHAO R, et al. Research on Public Opinion Risk Management and Control Under Network Media Big Data[C]// EAI International Conference, BigIoT-EDU. Cham: Springer Nature Switzerland, 2022: 147-152.
|
| [3] |
SUHAIMIN M S M, HIJAZI M H A, MOUNG E G, et al. Social media sentiment analysis and opinion mining in public security: Taxonomy, trend analysis, issues and future directions[J]. Journal of King Saud University-Computer and Information Sciences, 2023, 35(9): 101776.
|
| [4] |
RODRíGUEZ-IBáNEZ M, CASáNEZ-VENTURA A, CASTEjóN-MATEOS F, et al. A review on sentiment analysis from social media platforms[J]. Expert Systems with Applications, 2023, 223: 119862.
|
| [5] |
JAIN R, KUMAR A, NAYYAR A, et al. Explaining sentiment analysis results on social media texts through visualization[J]. Multimedia Tools and Applications, 2023, 82(15): 22613-22629.
|
| [6] |
高浩鑫. 基于图神经网络的网络舆情预警风险智能监管[D]. 北京: 北京邮电大学, 2023.
|
| [7] |
管雨翔, 王娟, 兰月新, 等. 基于LDA和TextCNN的跨平台网络舆情风险预警研究[J]. 情报探索, 2024(10): 109-115.
|
| [8] |
罗涛, 谢凤祥, 李光华. 面向舆情监控的智能化自然语言处理算法设计[J]. 电子设计工程, 2023, 31(21): 114-118.
|
| [9] |
JEMAI F, HAYOUNI M, BACCAR S. Sentiment analysis using machine learning algorithms[C]// 2021 International Wireless Communications and Mobile Computing (IWCMC). IEEE, 2021: 775-779.
|
| [10] |
KOKAB S T, ASGHAR S, NAZ S. Transformer-based deep learning models for the sentiment analysis of social media data[J]. Array, 2022, 14: 100157.
|
| [11] |
佘梦婷. 基于BERT-BiLSTM-CNN多特征融合研究及在三胎政策舆情分析的应用[D]. 南昌: 南昌大学, 2023.
|
| [12] |
翟晗名. 基于知识图谱的社交媒体舆论热点问题研究[D]. 北京: 中国人民公安大学, 2024.
|
| [13] |
苏婕. 区域旅游舆情监测平台的设计与实现[D]. 成都: 电子科技大学, 2024.
|
| [14] |
邓任敏. 基于事理图谱的网络舆情分析与应用研究[D]. 天津: 天津科技大学, 2023.
|
| [15] |
JHA V, SAVITHA R, SHENOY P D, et al. A novel sentiment aware dictionary for multi-domain sentiment classification[J]. Computers & Electrical Engineering, 2018, 69: 585-597.
|
| [16] |
VIEGAS F, ALVIM M S, CANUTO S, ET AL. EXPLOITING SEMANTIC RELATIONSHIPS FOR UNSUPErvised expansion of sentiment lexicons[J]. Information Systems, 2020, 94: 101606.
|
| [17] |
GAMON M. Sentiment classification on customer feedback data: noisy data, large feature vectors, and the role of linguistic analysis[C]// COLING 2004: Proceedings of the 20th international conference on computational linguistics. 2004: 841-847.
|
| [18] |
YE Q, ZHANG Z, LAW R. Sentiment classification of online reviews to travel destinations by supervised machine learning approaches[J]. Expert systems with applications, 2009, 36(3): 6527-6535.
|
| [19] |
BUčAR J, ŽNIDARšIč M, POVH J. Annotated news corpora and a lexicon for sentiment analysis in Slovene[J]. Language Resources and Evaluation, 2018, 52: 895-919.
|
| [20] |
TIWARI P, MISHRA B K, KUMAR S, et al. Implementation of n-gram methodology for rotten tomatoes review dataset sentiment analysis[M]// Cognitive analytics: concepts, methodologies, tools, and applications. IGIGlobal, 2020: 689-701.
|
| [21] |
DEVLIN J, CHANG M W, LEE K, et al. BERT: Pre-training of deep bidirectional transformers for language understanding[C]// Proceedings of the 2019 conference of the North American chapter of the association for computational linguistics:human language technologies, volume 1 (long and short papers). 2019: 4171-4186.
|
| [22] |
KHOSLA P, TETERWAK P, WANG C, et al. Supervised contrastive learning[J]. Advances in neural information processing systems, 2020, 33: 18661-18673.
|