【目的】本文针对行星探测数据的深度挖掘和智能提取的迫切需求,基于国内外行星探测获取的海量遥感数据,开展了行星探测特征信息提取与知识挖掘的关键技术及其应用研究。【方法】突破了多源、异构的行星数据的重构融合和可视化技术,克服了单一传感器成像信息不足的问题,可生成具有丰富空间和光谱信息的高质量遥感图像。建立了基于可见近红外光谱探测数据的物质成分反演模型,可提取月球及火星矿物光谱特征参量并反演月表元素、矿物的含量与分布。开发了融合多源数据的月壤厚度反演与次表层结构反演算法,利用微波和雷达数据获取月壤厚度及其物理性质,可对次表层结构和地层信息进行分析。利用月球和火星的影像及高程数据,实现了表面多尺度地形因子计算和基于深度学习的典型形貌特征自动提取、绝对模式年龄计算和地质要素制图功能。【结果】在此基础上,实现形貌要素、物质成分信息、次表层结构的集成平台展示和互操作分析,研制了具有自主知识产权的行星数据分析挖掘软件工具。该工具将在国家空间科学数据中心公开部署,并在山东大学威海行星数据系统(PDS)实验室镜像发布,以支撑行星数据制图和地质演化等相关研究。