数据与计算发展前沿 ›› 2025, Vol. 7 ›› Issue (1): 2-18.
CSTR: 32002.14.jfdc.CN10-1649/TP.2025.01.001
doi: 10.11871/jfdc.issn.2096-742X.2025.01.001
收稿日期:
2024-11-02
出版日期:
2025-02-20
发布日期:
2025-02-21
通讯作者:
*李根(E-mail: 作者简介:
水映懿,中国人民公安大学,硕士研究生,CCF学生会员,主要研究方向为社交媒体流行度预测,本文中主要负责论文的撰写与修改。基金资助:
SHUI Yingyi1(),ZHANG Qi1,LI Gen1,*(
),ZHANG Shihao1,WU Shang2
Received:
2024-11-02
Online:
2025-02-20
Published:
2025-02-21
摘要:
【目的】影响力预测作为社交网络分析的重要内容,对于舆情监控、网络营销、情报分析、个性化推荐、广告定位、传播预测等多个领域具有重要的社会价值和现实意义。早期基于特征工程的影响力预测方法,通过提取并构建关键特征,建立不同特征与流行度之间的关系模型。本文重点关注与社交网络影响力相关的多类特征,从多类特征提取、预测模型构建和预测评估方法等方面进行了研究和综述,旨在综合分析已有研究方法,为提高社交网络影响力预测精度提供借鉴和参考。【方法】本文立足于当前广泛采用的深度学习方法,通过查阅文献资料,对社交网络的视觉特征、文本特征、情感特征、时间特征和用户特征分别进行了总结和阐述,并对基于多类特征的社交网络影响力预测方法的研究现状和局限性进行了分析。【结论】随着深度学习理论的发展,深度特征提取和预测模型构建取得了突破性进展,但目前在社交网络影响力预测方面,基于多类特征的特征组合预测方法仍然存在不足,需要研究更有效的特征预提取模型来提升社交网络影响力预测精度。
水映懿, 张琪, 李根, 张士豪, 吴尚. 基于多类特征的社交网络影响力预测研究综述[J]. 数据与计算发展前沿, 2025, 7(1): 2-18.
SHUI Yingyi, ZHANG Qi, LI Gen, ZHANG Shihao, WU Shang. A Review of Research on Social Network Influence Prediction Based on Multi-Class Features[J]. Frontiers of Data and Computing, 2025, 7(1): 2-18, https://cstr.cn/32002.14.jfdc.CN10-1649/TP.2025.01.001.
表4
当前短视频影响力预测的研究汇总"
研究人员 | 方法 | 具体技术 | 数据集 | 实验指标 | 实验结果 |
---|---|---|---|---|---|
Din等人[ | 基于CNN深度学习模型 | 使用提取视频视觉CNN,结合社交网络数据 | 大规模短视频数据集* | \ | \ |
Bielski等人[ | 基于自我注意机制和Grad-CAM 可视化方法的多模态流行度预测模型 | 结合了Grad-CAM可视化方法的自注意机制,用于加权时间域内帧的相对重要性 | Facebook视频数据集* | 准确率/ Spearman相关系数 | 72.7%/0.612 |
Abidi 等人[ | 物联网技术数据收集 | 使用传感器和智能设备收集环境数据 | IMDb数据集 | RMSE | 0.479 |
Liu 等人[ | 深度神经网络(DNN) | 使用物联网传感器跟踪用户的动物和手势 | 用户观看数据集 | 准确率 | 88.7% |
Abbas等人[ | 基于社会网络分析的方法 | 分析用户之间的社交网络关系,构建用户影响力传播模型 | Movielens 20M数据集/Digg投票数据集 | \ | \ |
He 和 Li [ | 基于CNN深度学习CPRP-CNN模型与物联网相结合 | 利用卷积层对短视频的文本内容以及用户综合特征提取 | Vine平台提供的短视频数据集 | MSE/MAE/准确率 | 2.728/1.751/74.7% |
表5
影响力预测中提取文本的语义特征和类别特征汇总"
文本特征 | 类别 | 模型 | 研究人员 | 数据集 | 指标 | 实验结果 |
---|---|---|---|---|---|---|
语义特征(例如帖子内容) | 预训练模型 | BertBase/BertLarge | Devlin等人[ | 英文Wikipedia | 准确率 | 84.6%/86.7% |
基于子词信息的Skip-gram模型 | Bojanowski等人[ | Wikipedia数据集 | 准确率/Spearman相关系数 | 56.4%/70(德语) | ||
CatBoost | Wang等人[ | SMPD 社交媒体数据集 | Spearman相关系数/MAE/MSE | 0.784/1.199/2.527 | ||
词嵌入编码 | Skip-gram+NEG-15 | Mikolov等人[ | Google内部新闻数据集* | 准确率 | 61% | |
AlexNet+DAN | Sanjo和Katsurai[ | Cookpad 数据集* | MSE/MAE | 6.039/1.960 | ||
特征提取信息隐含的内容(例如帖子标题、主题和标签) | One-hot编码 | LightGBM | Hsu等人[ | SMD 数据集* | Spearman相关系数/MSE/MAE | 0.656/3.561/1.497 |
直接计算 | 多模态深度学习框架+注意力机制 | Xu等[ | SMP Challenge 2020数据集 | Spearman相关系数/MAE | 0.636/1.401 | |
模型转换 | CatBoost中的有序TS(有序目标统计量) | Prokhoren-ova 等人[ | Appetency数据集 | Logloss/Zero-one Loss | 0.072/0.018 | |
Wang 等人[ | SMPD 社交媒体数据集 | Spearman相关系数/MAE/MSE | 0.784/1.199/2.527 |
表6
社交网络情感分析相关研究"
研究人员 | 模型 | 数据集 | 指标 | 实验结果 |
---|---|---|---|---|
Li等人[ | SENTI2POP(ARIMA) | Twitter数据集 | Non-Senti RMSE/ Senti RMSE | AI话题:0.34/0.23 Air Quality话题:0.33/0.22 |
Goularas和Kamis[ | 多层CNN+LSTM | SemEval 竞赛中的多个数据集 | 准确率/召回率/F1- 分数/精确率 | 59.0%/55.0%/56.0%/60.0% |
Wan[ | CNNs+word2vec+part | 微博评论数据集* | 准确率/召回率/F1- 分数 | 89.3%/87.5%/88.4% |
Sun 等人[ | 3L-DIMN | SemEval 2014 Task 4 | 准确率 | 80.6% |
Uddin 等人[ | LSTM | Twitter孟加拉语的推文* | 准确率 | 86.3% |
Wang等人[ | 改进的 LDA | Twitter 推文数据 | 准确率 | 68.0% |
Ren 等人[ | BERT | MBTI数据集/ Big Five 数据集 | 准确率 | 92.5%/80.3% |
Kumar[ | ConvNet-SVMBoVW | CWC2019数据集/STS-Gold数 据集/Flickr8k数据集 | 准确率 | 91.0%/87.1%/73.2% |
表7
统计流行度得分的用户特征汇总"
用户特征 | 研究人员 |
---|---|
关注者+粉丝+浏览量 | Wang等人[ |
浏览次数 | Trzciński等人[ |
评论 | Wang 等人[ |
生命周期+评论 | Chen等人[ |
分享/转发/投票 | Castillo等人[ 等人[ |
浏览次数+投票次数 | Szab和Huberman[ |
浏览次数+评论+评分 (喜欢/不喜欢) | Tan 和 Zhang[ |
[1] | 中国互联网络信息中心. 第53次中国互联网络发展状况统计报告[EB/OL]. [2024-08-03]. https://www.cnnic.cn/n4/2024/0322/c88-10964.html. |
[2] | 庄洪武. 基于深度学习的在线社交网络影响力及其在群体推荐的应用研究[D]. 长沙: 国防科技大学, 2022: 25-28. |
[3] | AZUAJE F, WITTEN I, E F. Data Mining: Practical Machine Learning Tools and Techniques[J]. Biomedical Engineering Online, 2006, 5: 1-2. |
[4] | MCCREADIE R, MACDONALD C, OUNIS I. News article ranking: leveraging the wisdom of bloggers[C]//RIAO'10:Adaptivity, Personalization and Fusion of Heterogeneous Information, 2010: 40-48. |
[5] | AN L A, XIAOWEN W, NING X, et al. SMPC: boosting social media popularity prediction with caption[J]. Multimedia Systems, 2023, 29(2): 577-586 |
[6] | BAO P, SHEN H, HUANG J, et al. Popularity Prediction in Microblogging Network: A Case Study on Sina Weibo[C]// 22nd International World Wide Web Conference (WWW'13), 2013: 177-178. |
[7] | ZHANG J, LIU B, TANG J, et al. Social influence locality for modeling retweeting behaviors[C]// IJCAI'13, 2013: 2761-2767. |
[8] | CAO Q, SHEN H, GAO J, et al. Popularity Prediction on Social Platforms with Coupled Graph Neural Networks[C]// WSDM '20, New York, NY, USA, 2020: 70-78. |
[9] | WU B, LIU P, CHENG W, et al. SMP Challenge: An Overview and Analysis of Social Media Prediction Challenge[C]// MM '23: Proceedings of the 31st ACM International Conference on Multimedia, 2024: 9651-9655. |
[10] | RIZOIU M, XIE L, SANNER S, et al. Expecting to be HIP: Hawkes Intensity Processes for Social Media Popularity[C]// In Proceedings of the 26th International Conference on World Wide Web (WWW '17), 2017: 735-744. |
[11] | MISHRA S, RIZOIU M, XIE L. Modeling Popularity in Asynchronous Social Media Streams with Recurrent Neural Networks[C]// Twelfth International AAAI Conference on Web and Social Media, 2018, 12(1): 201-210. |
[12] | DIN I U, GUIZANI M, RODRIGUES J J P C, et al. Machine learning in the Internet of Things: Designed techniques for smart cities[J]. Future Generation Computer Systems, 2019, 100: 826-843. |
[13] | BIELSKI A, TRZCINSKI T. Understanding Multimodal Popularity Prediction of Social Media Videos With Self-Attention[J]. IEEE Access, 2018, 6: 74277-74287. |
[14] | ABBAS K, K HASAN M, ABBASI A, et al. Co-Evolving Popularity Prediction in Temporal Bipartite Networks: A Heuristics Based Model[J]. IEEE Access, 2023, 11: 37546-37559. |
[15] | HE Z, LI D. The Short Video Popularity Prediction Using Internet of Things and Deep Learning[J]. IEEE Access, 2024, 12: 47508-47517. |
[16] | ABIDI S M R, XU Y, NI J, et al. Popularity prediction of movies: from statistical modeling to machine learning techniques[J]. Multimedia Tools and Applications, 2020, 79(47): 35583-35617. |
[17] | LIU L, HU H, LUO Y, et al. When Wireless Video Streaming Meets AI: A Deep Learning Approach[J]. IEEE Wireless Communications, 2020, 27(2): 127-133. |
[18] | S Abousaleh F, H Cheng W, H Yu N, et al. Multimodal Deep Learning Framework for Image Popularity Prediction on Social Media[J]. IEEE Transactions on Cognitive and Developmental Systems, 2021, 13(3): 679-692. |
[19] | HE K, ZHANG X, REN S, et al. Deep Residual Learning for Image Recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016: 770-778. |
[20] | XU K, LIN Z, ZHAO J, et al. Multimodal Deep Learning for Social Media Popularity Prediction With Attention Mechanism[C]// MM '20, New York, NY, USA, 2020: 4580-4584. |
[21] | ZHANG H, WU C, ZHANG Z, et al. ResNeSt: Split-Attention Networks[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2022: 2735-2745. |
[22] | HINTON G E, KRIZHEVSKY A, WANG S D. Transforming Auto-Encoders[C]// ICANN'11: Proceedings of the 21th international conference on Artificial neural networks, Berlin, Heidelberg: Springer, 2011, 6(1): 44-51. |
[23] | SINGHAL S, R SHAH R, CHAKRABORTY T, et al. SpotFake: A Multi-modal Framework for Fake News Detection[C]// 2019 IEEE Fifth International Conference on Multimedia Big Data (BigMM), Singapore, 2019: 39-47. |
[24] | MEGHAWAT M, YADAV S, MAHATA D, et al. A Multimodal Approach to Predict Social Media Popularity[C]// 2018 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR), 2018: 190-195. |
[25] | MARUJO L, BUGALHO M, NETO J, et al. Hourly Traffic Prediction of News Stories[C]// 5th ACM RecSys Conference, 2013(3): 1-5. |
[26] | ZOU W, HU X, PAN Z, et al. Exploring the relationship between social presence and learners’ prestige in MOOC discussion forums using automated content analysis and social network analysis[J]. Computers in Human Behavior, 2021, 115: 106582. |
[27] | TOTTI L C, COSTA F A, AVILA S, et al. The impact of visual attributes on online image diffusion[C]// Web science, 2014: 42-51. |
[28] | QORIB M, GIZAW R S, KIM J. Impact of Sentiment Analysis for the 2020 U.S. Presidential Election on Social Media Data: ICMLT '23[C]. New York, NY, USA, 2023: 28-34. |
[29] | MIKOLOV T, SUTSKEVER I, CHEN K, et al. Distributed representations of words and phrases and their compositionality[C]// NIPS'13, Red Hook, NY, USA, 2013: 3111-3119. |
[30] | DOĞAN E, KAYA B. Text Summarization in Social Networks by using Deep Learning[C]// 2019 1st International Informatics and Software Engineering Conference (UBMYK), 2019: 1-5. |
[31] | SANJO S, KATSURAI M. Recipe Popularity Prediction with Deep Visual-Semantic Fusion[C]// CIKM '17, New York, NY, USA, 2017: 2279-2282. |
[32] | WADHWANI G K, VARSHNEY P K, GUPTA A, et al. Sentiment Analysis and Comprehensive Evaluation of Supervised Machine Learning Models Using Twitter Data on Russia-Ukraine War[J]. SN Comput Sci, 2023, 4(4): 346. |
[33] |
YADAV A, VISHWAKARMA D K. Sentiment analysis using deep learning architectures: a review[J]. Artificial Intelligence Review, 2020, 53(6): 4335-4385.
doi: 10.1007/s10462-019-09794-5 |
[34] | DINH X T, VAN PHAM H. A Proposal of Deep Learning Model for Classifying User Interests on Social Networks[C]// ICMLSC '20, New York, NY, USA, 2020: 10-14. |
[35] | BHATTACHARJEE U. Capsule Network on Social Media Text: An Application to Automatic Detection of Clickbaits[C]// 2019 11th International Conference on Communication Systems & Networks (CO-MSNETS), Bengaluru, India, 2019: 473-476. |
[36] | GOLDANI M H, MOMTAZI S, SAFABAKHSH R. Detecting fake news with capsule neural networks[J]. Applied Soft Computing, 2021, 101: 106991. |
[37] | SINGULURI P K, JAYAMMA B, BHARATHI B D, et al. Crime Prediction Using Modified Capsule Network with CrissCross Optimization on the Sentiment Analysis for Cyber-Security[C]// 9th International Conference, Berlin, Heidelberg 2023: 105-116. |
[38] | ZHANG W, WANG W, WANG J, et al. User-guided Hierarchical Attention Network for Multi-modal Social Image Popularity Prediction[C]// WWW '18, 2018: 1277-1286. |
[39] |
LI Y, LIU T, HU J, et al. Topical Co-Attention Networks for hashtag recommendation on microblogs[J]. Neurocomputing, 2019, 331: 356-365.
doi: 10.1016/j.neucom.2018.11.057 |
[40] | STOKOWIEC W, TRZCIŃSKI T, WOŁK K, et al. Shallow Reading with Deep Learning: Predicting Popularity of Online Content Using only Its Title[C]// International Symposium on Methodologies for Intelligent Systems, 2017: 136-145. |
[41] | LIYIH A, ANAGAW S, YIBEYIN M, et al. Sentiment analysis of the Hamas-Israel war on YouTube comments using deep learning[J]. Sci Rep, 2024, 14(1): 13647. |
[42] | CANTINI R, MAROZZO F, BRUNO G, et al. Learning Sentence-to-Hashtags Semantic Mapping for Hashtag Recommendation on Microblogs[J]. ACM Transactions on Knowledge Discovery from Data, 2021, 16: 1-26. |
[43] | KUMAR S, GARG S, VATS Y, et al. Content Based Bot Detection using Bot Language Model and BERT Embeddings[C]// 2021 5th International Conference on Computer, Communication and Signal Processing (ICCCSP), 2021: 285-289. |
[44] | MALIK M S I, IMRAN T, MONA MAMDOUH J. How to detect propaganda from social media? Exploitation of semantic and fine-tuned language models[J]. PeerJ Comput Sci, 2023, 9: e1248. |
[45] | HA T. Generating Plausible and Context-Appropriate Comments on Social Media Posts: A Large Language Model-Based Approach[J]. IEEE Access, 2024, 12: 161545-161556. |
[46] | CAI Z, TAN Z, LEI Z, et al. LMBot: Distilling Graph Knowledge into Language Model for Graph-less Deployment in Twitter Bot Detection[C]// WSDM '24: Proceedings of the 17th ACM International Conference on Web Search and Data Mining, 2023: 57-66. |
[47] | YE R, ZHANG C, WANG R, et al. Natural Language is All a Graph Needs[J]. CoRR, 2023(8): 1-21. |
[48] | DEVLIN J, CHANG M, LEE K, et al. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding[J]. CoRR, 2019: 4171-4186. |
[49] | BOJANOWSKI P, GRAVE E, JOULIN A, et al. Enriching Word Vectors with Subword Information[J]. Transactions of the Association for Computational Linguistics, 2017, 5: 135-146. |
[50] | WANG K, WANG P, CHEN X, et al. A Feature Generalization Framework for Social Media Popularity Prediction[C]// MM '20: Proceedings of the 28th ACM International Conference on Multimedia, New York, NY, USA, 2020: 4570-4574. |
[51] | HSU C, KANG L, LEE C, et al. Popularity Prediction of Social Media based on Multi-Modal Feature Mining[C]// MM '19, New York, NY, USA, 2019: 2687-2691. |
[52] | PROKHORENKOVA L, GUSEV G, VOROBEV A, et al. CatBoost: unbiased boosting with categorical features[EB/OL]. (2024-08-30) https://arxiv.org/abs/1706.09516. |
[53] | GOULARAS D, KAMIS S. Evaluation of Deep Learning Techniques in Sentiment Analysis from Twitter Data[C]// 2019 International Conference on Deep Learning and Machine Learning in Emerging Applications (Deep-ML), Istanbul, Turkey, 2019: 12-17. |
[54] | REN Z, SHEN Q, DIAO X, et al. A sentiment-aware deep learning approach for personality detection from text[J]. Information Processing & Management, 2021, 58: 102532. |
[55] | WAN F. Sentiment Analysis of Weibo Comments Based on Deep Neural Network[C]// 2019 International Conference on Communications, Information System and Computer Engineering (CISCE), 2019: 626-630. |
[56] | SUN C, LV L, TIAN G, et al. Deep Interactive Memory Network for Aspect-Level Sentiment Analysis[J]. ACM Transactions on Asian and Low-Resource Language Information Processing, 2020, 20: 1-12. |
[57] | UDDIN A H, BAPERY D, ARIF A. Depression Analysis from Social Media Data in Bangla Language using Long Short Term Memory (LSTM) Recurrent Neural Network Technique[C]// 2019 International Conference on Computer, Communication, Chemical, Materials and Electronic Engineering (IC4ME2), Rajshahi, Bangladesh, 2019: 1-4. |
[58] | WANG D, AL-RUBAIE A, HIRSCH B, et al. National happiness index monitoring using Twitter for bilanguages[J]. Social Network Analysis and Mining, 2021, 11: 1-18. |
[59] | KYRYCHENKO Y, BRIK T, VAN DER LINDEN S, et al. Social identity correlates of social media engagement before and after the 2022 Russian invasion of Ukraine[J]. Nat Commun, 2024, 15(1): 8127. |
[60] | Al Asad M A, Imran H M, Alamin M, et al. Sentiment and Interest Detection in Social Media using GPT-based Large Language Models[C]// MLNLP '23, New York, NY, USA, 2024: 209-214. |
[61] | MACEDA L L, LLOVIDO J L, ARTIAGA M B, et al. Classifying Sentiments on Social Media Texts: A GPT-4 Preliminary Study[C]// NLPIR '23, New York, NY, USA, 2024: 19-24. |
[62] | GULIYEV N, RUSTAMOV Z, RUSTAMOV S. Analysis of Public Sentiment in Azerbaijani News and Social Media[C]// CMLDS '24, New York, NY, USA, 2024: 1-6. |
[63] | VENKATAKRISHNAN R, GOODARZI M, A CANBAZ M. Exploring Large Language Models’ Emotion Detection Abilities: Use Cases From the Middle East[C]// 2023 IEEE Conference on Artificial Intelligence (CAI), 2023: 241-244. |
[64] | CAMPOS V, SALVADOR A, JOU B, et al. Diving Deep into Sentiment: Understanding Fine-tuned CNNs for Visual Sentiment Prediction[EB/OL]. (2024-08-30) https://arxiv.org/abs/1508.05056. |
[65] | KUMAR A, SRINIVASAN K, CHENG W, et al. Hybrid context enriched deep learning model for fine-grained sentiment analysis in textual and visual semiotic modality social data[J]. Information Processing & Management, 2020, 57(1): 25-30. |
[66] | LUO J. Large Multimodal Models as Social Multimedia Analysis Engines[C]// MM '24, New York, NY, USA, 2024: 6-7. |
[67] | ROMBACH R, BLATTMANN A, LORENZ D, et al. High-Resolution Image Synthesis with Latent Diffusion Models[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022: 10674-10685. |
[68] | RICKER J, ASSENMACHER D, HOLZ T, et al. AI-Generated Faces in the Real World: A Large-Scale Case Study of Twitter Profile Images[C]// RAID '24, New York, NY, USA, 2024: 513-530. |
[69] | ALDOUS K, SALMINEN J, FAROOQ A, et al. Using ChatGPT in Content Marketing: Enhancing Users’ Social Media Engagement in Cross-Platform Content Creation through Generative AI[C]// HT '24, New York, NY, USA, 2024: 376-383. |
[70] | LI J, GAO Y, GAO X, et al. SENTI2POP: Sentiment-Aware Topic Popularity Prediction on Social Media[C]// 2019 IEEE International Conference on Data Mining (ICDM), Beijing, China, 2019: 1174-1179. |
[71] | VAN CANNEYT S, LEROUX P, DHOEDT B, et al. Modeling and predicting the popularity of online news based on temporal and content-related features[J]. Multimedia Tools and Applications, 2018, 77: 1409-1436. |
[72] | BHATTACHARYA D, RAM S. RT @News: An Analysis of News Agency Ego Networks in a Microblogging Environment[J]. ACM Transactions on Management Information Systems (TMIS), 2015. 6(3): 1-25. |
[73] | KUANG K, JIANG M, CUI P, et al. Steering Social Media Promotions with Effective Strategies[C]// 2016 IEEE 16th International Conference on Data Mining (ICDM), Barcelona, Spain, 2016: 985-990. |
[74] | XIAO C, LIU C, MA Y, et al. Time sensitivity-based popularity prediction for online promotion on Twitter[J]. Information Sciences, 2020, 525(7): 82-92. |
[75] | GÜRSUN G, CROVELLA M, MATTA I. Describing and forecasting video access patterns[C]// 2011 Proceedings IEEE INFOCOM, Shanghai, China, 2011: 16-20. |
[76] | BIELSKI A, TRZCINSKI T. Pay Attention to Virality: Understanding Popularity of Social Media Videos with the Attention Mechanism[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2018: 2398-23982. |
[77] | WANG X, FANG B, ZHANG H, et al. Predicting the Popularity of Online Content Based on the Weak Ties Theory[C]// 2018 IEEE Third International Conference on Data Science in Cyberspace (DSC), 2018: 386-391. |
[78] | TAN Z, ZHANG Y. Predicting the Top-N Popular Videos via a Cross-Domain Hybrid Model[J]. IEEE Transactions on Multimedia, 2019, 21(1): 147-156. |
[79] | HE Z, HE Z, WU J, et al. Feature Construction for Posts and Users Combined with LightGBM for Social Media Popularity Prediction[C]// M '19: Proceedings of the 27th ACM International Conference on Multimedia, New York, NY, USA, 2019: 2672-2676. |
[80] | LAI X, ZHANG Y, ZHANG W. HyFea: Winning Solution to Social Media Popularity Prediction for Multimedia Grand Challenge 2020[C]// MM '20: Proceedings of the 28th ACM International Conference on Multimedia, New York, NY, USA, 2020: 4565-4569. |
[81] | KANG P, LIN Z, TENG S, et al. Catboost-based Framework with Additional User Information for Social Media Popularity Prediction[C]// MM '19, New York, NY, USA, 2019: 2677-2681. |
[82] | TRZCIŃSKI T, ROKITA P. Predicting Popularity of Online Videos Using Support Vector Regression[J]. IEEE Transactions on Multimedia, 2017, 19(11): 2561-2570. |
[83] | WANG Z, ZHOU J, MA J, et al. Discovering attractive segments in the user-generated video streams[J]. Information Processing & Management, 2020, 57: 102130. |
[84] | NGUYEN M, LE D, NAKAJIMA T, et al. Attention-Based Neural Network: A Novel Approach for Predicting the Popularity of Online Content[C]// The 21st IEEE International Conference on High Performance Computing and Communications (HPCC-2019), Zhangjiajie, China, 2019: 329-336. |
[85] |
CHEN G, KONG Q, XU N, et al. NPP: A neural popularity prediction model for social media content[J]. Neurocomputing, 2019, 333: 221-230.
doi: 10.1016/j.neucom.2018.12.039 |
[86] | CASTILLO C, EL-HADDAD M, PFEFFER J U R, et al. Characterizing the life cycle of online news stories using social media reactions[C]// CSCW '14, New York, NY, USA, 2014: 211-223. |
[87] | GAO S, MA J, CHEN Z. Modeling and Predicting Retweeting Dynamics on Microblogging Platforms[C]// Web Search and Data Mining, 2015: 107-116. |
[88] | SZABO G, HUBERMAN B A. Predicting the popularity of online content[J]. Communications of the ACM, 2010, 53(8): 80-88. |
[89] | QIU J, TANG J, MA H, et al. DeepInf: Social Influence Prediction with Deep Learning[C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2018: 1-10. |
[90] | K LEUNG C, CUZZOCREA A, J MAI J, et al. Personalized DeepInf: Enhanced Social Influence Prediction with Deep Learning and Transfer Learning[C]// 2019 IEEE International Conference on Big Data (Big Data), Los Angeles, CA, USA, 2019: 2871-2880. |
[91] | KEIKHA M M, RAHGOZAR M, ASADPOUR M, et al. Influence maximization across heterogeneous interconnected networks based on deep learning[J]. Expert Systems with Applications, 2020, 140: 112905. |
[92] | DING K, WANG R, WANG S. Social Media Popularity Prediction: A Multiple Feature Fusion Approach with Deep Neural Networks[C]// MM '19, New York, NY, USA, 2019: 2682-2686. |
[1] | 马秋平, 张琪, 赵晓凡. 图表问答研究综述[J]. 数据与计算发展前沿, 2025, 7(1): 19-37. |
[2] | 金家立, 高思远, 高满达, 王文彬, 柳绍祯, 孙哲南. 基于生成对抗网络和扩散模型的人脸年龄编辑综述[J]. 数据与计算发展前沿, 2025, 7(1): 38-55. |
[3] | 卢成浩,陈秀宏. 基于隐式分区学习深度特征融合重建曲面网络[J]. 数据与计算发展前沿, 2024, 6(6): 19-31. |
[4] | 韦一金,樊景超. 基于改进的BERT-BiGRU-Attention的农业科技政策分类模型[J]. 数据与计算发展前沿, 2024, 6(6): 53-61. |
[5] | 何文通,罗泽. 基于联邦学习的野生动物红外相机图像目标检测[J]. 数据与计算发展前沿, 2024, 6(6): 85-96. |
[6] | 晏直誉, 茹一伟, 孙福鹏, 孙哲南. 基于主动感知机制的视频行为识别方法研究[J]. 数据与计算发展前沿, 2024, 6(5): 66-79. |
[7] | 廖立波, 王书栋, 宋维民, 张兆领, 李刚, 黄永盛. CEPC上基于DeepSets模型的喷注标记算法研究[J]. 数据与计算发展前沿, 2024, 6(3): 108-115. |
[8] | 严瑾, 董科军, 李洪涛. 融合语义和共现特征的Web跟踪器深度识别方法[J]. 数据与计算发展前沿, 2024, 6(3): 127-138. |
[9] | 寇大治. 基于深度学习的口腔全景片牙齿自动分割方法[J]. 数据与计算发展前沿, 2024, 6(3): 162-172. |
[10] | 蔡程飞, 李军, 焦一平, 王向学, 郭冠辰, 徐军. 基于深度学习的医学多模态数据融合方法在肿瘤学中的进展和挑战[J]. 数据与计算发展前沿, 2024, 6(3): 3-14. |
[11] | 郑懿诺, 孙沐毅, 张虹云, 张婧, 邓天政, 刘倩. 深度学习在口腔种植影像学中的应用:研究进展与挑战[J]. 数据与计算发展前沿, 2024, 6(3): 41-49. |
[12] | 袁家琳, 欧阳汝珊, 戴懿, 赖小慧, 马捷, 龚静山. 基于深度学习乳腺X线摄影钙化识别分类模型的临床应用价值[J]. 数据与计算发展前沿, 2024, 6(2): 68-79. |
[13] | 王子元, 王国中. 改进的轻量级YOLOv5算法在行人检测的应用[J]. 数据与计算发展前沿, 2023, 5(6): 161-172. |
[14] | 巨家骥, 黄勃, 张帅, 郭茹燕. 融合情感词典和自注意力的双通道情感分析模型[J]. 数据与计算发展前沿, 2023, 5(4): 101-111. |
[15] | 李俊飞, 徐黎明, 汪洋, 魏鑫. 基于深度学习技术的科技文献引文分类研究综述[J]. 数据与计算发展前沿, 2023, 5(4): 86-100. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||