数据与计算发展前沿 ›› 2025, Vol. 7 ›› Issue (1): 2-18.

CSTR: 32002.14.jfdc.CN10-1649/TP.2025.01.001

doi: 10.11871/jfdc.issn.2096-742X.2025.01.001

• 专刊:生成式人工智能 • 上一篇    下一篇

基于多类特征的社交网络影响力预测研究综述

水映懿1(),张琪1,李根1,*(),张士豪1,吴尚2   

  1. 1.中国人民公安大学,信息网络安全学院,北京 100038
    2.北京市公安局网络安全保卫总队,北京 100029
  • 收稿日期:2024-11-02 出版日期:2025-02-20 发布日期:2025-02-21
  • 通讯作者: *李根(E-mail: 20237053@ppsuc.edu.cn
  • 作者简介:水映懿,中国人民公安大学,硕士研究生,CCF学生会员,主要研究方向为社交媒体流行度预测,本文中主要负责论文的撰写与修改。
    SHUI Yingyi, is a master’s student at the People’s Public Security University of China. She is a CCF student member. Her main research direction is social media popularity prediction.
    In this paper, she is mainly responsible for the writing and revision of the paper.
    E-mail: 759611461@qq.com|李根,中国人民公安大学,博士,讲师,主要研究方向包括人工智能安全、多媒体信息智能化处理、深度伪造人脸检测等。
    本文主要承担工作为文稿主题和内容修改。
    LI Gen, Ph.D., People’s Public Security University of China, Lecturer. His main research directions include AI security, intelligent processing of multimedia information, and DeepFake detection.
    In this paper, he is mainly responsible for modifying the theme and content of the manuscript.
    E-mail: 20237053@ppsuc.edu.cn
  • 基金资助:
    中央高校基本科研业务费专项资金资助(2020JKF316)

A Review of Research on Social Network Influence Prediction Based on Multi-Class Features

SHUI Yingyi1(),ZHANG Qi1,LI Gen1,*(),ZHANG Shihao1,WU Shang2   

  1. 1. School of Information and Cyber Security, People’s Public Security University of China, Beijing 100038, China
    2. Network Security Department of Beijing Public Security Bureau, Beijing 100029, China
  • Received:2024-11-02 Online:2025-02-20 Published:2025-02-21

摘要:

【目的】影响力预测作为社交网络分析的重要内容,对于舆情监控、网络营销、情报分析、个性化推荐、广告定位、传播预测等多个领域具有重要的社会价值和现实意义。早期基于特征工程的影响力预测方法,通过提取并构建关键特征,建立不同特征与流行度之间的关系模型。本文重点关注与社交网络影响力相关的多类特征,从多类特征提取、预测模型构建和预测评估方法等方面进行了研究和综述,旨在综合分析已有研究方法,为提高社交网络影响力预测精度提供借鉴和参考。【方法】本文立足于当前广泛采用的深度学习方法,通过查阅文献资料,对社交网络的视觉特征、文本特征、情感特征、时间特征和用户特征分别进行了总结和阐述,并对基于多类特征的社交网络影响力预测方法的研究现状和局限性进行了分析。【结论】随着深度学习理论的发展,深度特征提取和预测模型构建取得了突破性进展,但目前在社交网络影响力预测方面,基于多类特征的特征组合预测方法仍然存在不足,需要研究更有效的特征预提取模型来提升社交网络影响力预测精度。

关键词: 社交网络, 影响力预测, 多类特征, 深度学习

Abstract:

[Objective] Influence prediction, as an important content of social network analysis, has important social value and practical significance in many fields such as public opinion monitoring, online marketing, intelligence analysis, personalized recommendation, advertisement positioning, and communication prediction. Early influence prediction methods based on feature engineering established the relationship between different features and popularity by extracting and constructing key features. This paper focuses on the multi-class features related to social network influence, and conducts research and review from the aspects of multi-class feature extraction, prediction model construction, and prediction evaluation methods, aiming to comprehensively analyze the existing research methods, and provide reference for improving the accuracy of social network influence prediction. [Methods] Based on the current widely adopted deep learning methods, this paper summarizes and elaborates on the visual, textual, emotional, temporal, and user features of social networks by reviewing the literature, and analyzes the current research status and limitations of the influence prediction methods of social networks based on multi-class features. [Conclusions] With the development of deep learning theory, breakthrough progress has been made in deep feature extraction and prediction model construction, but at present, in terms of social network influence prediction, feature combination prediction methods based on multi-class features are still insufficient, and it is necessary to study more effective feature pre-extraction models to improve social network influence prediction accuracy.

Key words: social networks, influence prediction, multi-class features, deep learning