[1] |
Roh Y, Heo G, Whang S E. A survey on data collection for machine learning: a big data-ai integration perspe-ctive[J]. IEEE Transactions on Knowledge and Data Engineering, 2019, 33(4): 1328-1347.
doi: 10.1109/TKDE.2019.2946162
|
[2] |
Krizhevsky A, Sutskever I, Hinton G E. Imagenet clas-sification with deep convolutional neural networks[J]. Advances in neural information processing systems, 2012, 25(2): 1097-1105.
|
[3] |
McMahan H B, Moore E, Ramage D, et al. Federated learning of deep networks using model averaging[J]. arXiv preprint arXiv:1602.05629, 2016.
|
[4] |
Ramanan P, Nakayama K. Baffle: Blockchain based agg-regator free federated learning[C]// 2020 IEEE Internati-onal Conference on Blockchain (Block-chain), IEEE, 2020: 72-81.
|
[5] |
Kim H, Park J, Bennis M, et al. Blockchained on-device federated learning[J]. IEEE Communications Letters, 2019, 24(6): 1279-1283.
doi: 10.1109/LCOMM.2019.2921755
|
[6] |
McMahan B, Moore E, Ramage D, et al. Communication-efficient learning of deep networks from decentralized data[C]// Artificial intelligence and statistics, PMLR, 2017: 1273-1282.
|
[7] |
Li Y, Chen C, Liu N, et al. A blockchain-based dece-ntralized federated learning framework with committee consensus[J]. IEEE Network, 2020, 35(1): 234-241.
|
[8] |
Awan S, Li F, Luo B, et al. Poster: A reliable and acc-ountable privacy-preserving federated learning frame-work using the blockchain[C]// Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communi-cations Security, 2019: 2561-2563.
|
[9] |
Lugan S, Desbordes P, Brion E, et al. Secure architectures implementing trusted coalitions for blockchained distri-buted learning (TCLearn)[J]. IEEE Access, 2019, 7: 181789-181799.
doi: 10.1109/ACCESS.2019.2959220
|
[10] |
Zhu X, Li H, Yu Y. Blockchain-Based privacy preserving deep learning[C]// International Conference on Infor-mation Security and Cryptology, Springer, Cham, 2018: 370-383.
|
[11] |
Chen X, Ji J, Luo C, et al. When machine learning meets blockchain: A decentralized, privacy-preserving and secure design[C]// 2018 IEEE international conference on big data (big data), IEEE, 2018: 1178-1187.
|
[12] |
Lu Y, Huang X, Dai Y, et al. Blockchain and federated learning for privacy-preserved data sharing in industrial IoT[J]. IEEE Transactions on Industrial Informatics, 2019, 16(6): 4177-4186.
doi: 10.1109/TII.2019.2942190
|
[13] |
Liu Y, Peng J, Kang J, et al. A secure federated learning framework for 5G networks[J]. IEEE Wireless Comm-unications, 2020, 27(4): 24-31.
|
[14] |
Chen L, Charles Z, Papailiopoulos D. Draco: Robust distributed training via redundant gradients[J]. arXiv preprint arXiv:1803.09877, 2018.
|
[15] |
Guerraoui R, Rouault S. The hidden vulnerability of dis-tributed learning in byzantium[C]// International Confer-ence on Machine Learning, PMLR, 2018: 3521-3530.
|
[16] |
Blanchard P, El Mhamdi E M, Guerraoui R, et al. Ma-chine learning with adversaries: Byzantine tolerant grad-ient descent[J]. Advances in Neural Information Proces-sing Systems, 2017, 30.
|
[17] |
Muñoz-González L, Co K T, Lupu E C. Byzantine-robust federated machine learning through adaptive model averaging[J]. arXiv preprint arXi-v:1909.05125, 2019.
|
[18] |
Yousefpour A, Shilov I, Sablayrolles A, et al. Opacus: User-friendly differential privacy library in PyTorch[J]. arXiv preprint arXiv:2109.12298, 2021.
|
[19] |
Nakamoto S. Bitcoin: A peer-to-peer electronic cash system[J]. Decentralized Business Review, 2008: 21260.
|
[20] |
工信部. 中国区块链技术和应用发展白皮书[R/OL]. [2016-10-18]. http://www.199it.com/archives/526865.html.
|
[21] |
陈凯. 深度学习模型的高效训练算法研究[D]. 中国科学技术大学, 2016.
|
[22] |
Chen K, Huo Q. Scalable training of deep learning mac-hines by incremental block training with intrablock parallel optimization and blockwise model-update filt-ering[C]// 2016 ieee international conference on acoustics, speech and signal processing (icassp), IEEE, 2016: 5880-5884.
|
[23] |
Dwork C. Differential privacy: A survey of results[C]// International conference on theory and applications of models of computation. Springer, Berlin, Heidelberg, 2008: 1-19.
|
[24] |
Dwork C, McSherry F, Nissim K, et al. Calibrating noise to sensitivity in private data analysis[C]// Theory of cryp-tography conference. Springer, Berlin, Heidelberg, 2006: 265-284.
|
[25] |
McSherry F, Talwar K. Mechanism design via diffe-rential privacy[C]// 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07), IEEE, 2007: 94-103.
|
[26] |
Dwork C, Kenthapadi K, McSherry F, et al. Our data, ourselves: Privacy via distributed noise generation[C]// Annual international conference on the theory and applic-ations of cryptographic techniques, Springer, Berlin, Heidelberg, 2006: 486-503.
|
[27] |
Lecun Y, Cortes C. The MNIST database of handwritten digits[J/OL]. 2010. http://yann.lecun.com/exdb/mnist/.
|