[1] |
周文柏, 张卫明, 俞能海, 等. 人脸视频深度伪造与防御技术综述[J]. 信号处理, 2021, 37(12): 2338-2355.
|
[2] |
张璐, 芦天亮, 杜彦辉. 人脸视频深度伪造检测方法综述[J]. 计算机科学与探索, 2023, 17(1): 1-26.
doi: 10.3778/j.issn.1673-9418.2205035
|
[3] |
曹申豪, 刘晓辉, 毛秀青, 等. 人脸伪造及检测技术综述[J]. 中国图象图形学报, 2022, 27(4): 1023-1038.
|
[4] |
HE K M, ZHANG X Y, REN S Q, et al. Deep Residual Learning for Image Recognition[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
|
[5] |
SABOUR S, FROSST N, HINTON G E. Dynamic Routing between Capsules[C]. Proceedings of the Annual Conference on Neural Information Processing Systems, 2016: 3859-3869.
|
[6] |
CHOLLET F. Xception: Deep Learning with Depthwise Separable Convolutions[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 1800-1807.
|
[7] |
TAN M, LE Q. Efficientnet: Rethinking Model Scaling for Convolutional Neural Networks[C]. Proceedings of the International Conference on Machine Learning, 2019: 6105-6114.
|
[8] |
YU Y, NI R, ZHAO Y. Mining Generalized Features for Detecting AI-Manipulated Fake Faces[EB/OL]. [2022-10-20]. https://arxiv.org/abs/2010.14129.
|
[9] |
LIU Z, QI X J, TORR P H S. Global Texture Enhancement for Fake Face Detection in the Wild[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 8057-8066.
|
[10] |
杨少聪, 王健, 孙运莲, 等. 多级特征全局一致性的人脸伪造检测[J]. 中国图象图形学报, 2022, 27(9): 2708-2720.
|
[11] |
LI L Z, BAO J M, ZHANG T, et al. Face X-Ray for More General Face Forgery Detection[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 5000-5009.
|
[12] |
DANG H, LIU F, STEHOUWER J, et al. On the Detection of Digital Face Manipulation[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 5780-5789.
|
[13] |
蒋小玉, 刘春晓. 边缘与区域不一致性引导下的图像拼接篡改检测网络[J]. 中国图象图形学报, 2021, 26(10): 2411-2420.
|
[14] |
GÜERA D, DELP E J. Deepfake Video Detection using Recurrent Neural Networks[C]. Proceedings of the IEEE International Conference on Advanced Video and Signal Based Surveillance, 2018: 1-6.
|
[15] |
AMERINI I, CALDELLI R. Exploiting Prediction Error Inconsistencies through LSTM-based Classifiers to Detect Deepfake Videos[C]. Proceedings of the ACM Workshop on Information Hiding and Multimedia Security, 2020: 97-102.
|
[16] |
MASI I, KILLEKAR A, MASCARENHAS R M, et al. Two-Rranch Recurrent Network for Isolating Deepfakes in Videos[C]. Proceedings of the European Conference on Computer Vision, 2020: 667-684.
|
[17] |
FEI J W, XIA Z H, YU P P, et al. Exposing AI-Generated Videos with Motion Magnification[J]. Multimedia Tools and Applications, 2021, 80: 30789-30802.
doi: 10.1007/s11042-020-09147-3
|
[18] |
LI Y Z, CHANG M C, LYU S W. In Ictu Oculi: Exposing AI Created Fake Videos by Detecting Eye Blinking[C]. Proceedings of the IEEE International Workshop on Information Forensics and Security, 2018: 1-7.
|
[19] |
YANG X, LI Y Z, LYU S. Exposing Deep Fakes Using Inconsistent Head Poses[C]. Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, 2019: 8261-8265.
|
[20] |
MATERN F, RIESS C, STAMMINGER M. Exploiting Visual Artifacts to Expose Deepfakes and Face Manipulations[C]. Proceedings of the IEEE Winter Applications of Computer Vision Workshops, 2019: 83-92.
|
[21] |
CIFTCI U A, DEMIR I, YIN L. FakeCatcher: Detection of Synthetic Portrait Videos using Biological Signals[C]. Proceedings of the IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020: 1-1.
|
[22] |
QI H, GUO Q, JUEFEI-XU F, et al. DeepRhythm: Exposing DeepFakes with Attentional Visual Heartbeat Rhythms[C]. Proceedings of the ACM International Conference on Multimedia, 2020: 4318-4327.
|
[23] |
REBUFFI S A, KOLESNIKOV A, SPERL G, et al. iCaRL: Incremental Classifier and Representation Learning[C]. Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, 2017: 5533-5542.
|
[24] |
HU X T, TANG K H, MIAO C Y, et al. Distilling Causal Effect of Data in Class-Incremental Learning[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 3956-3965.
|
[25] |
LI Z Z, HOIEM D. Learning Without Forgetting[C]. Proceedings of the European Conference on Computer Vision, 2016: 614-629.
|
[26] |
KIRKPATRICKA J, PASCANU R, RABINOWITZ N, et al. Overcoming Catastrophic Forgetting Inneural Networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(13): 3521-3526.
|
[27] |
MALLYA A, LAZEBNIK S. PackNet: Adding Multiple Tasks to a Single Network by Iterative Pruning[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 7765-7773.
|
[28] |
ZHANG C, SONG N, LIN G, et al. Few-Shot Incremental Learning With Continually Evolved Classifiers[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 12450-12459.
|
[29] |
YAN S P, XIE J W, HE X M. DER: Dynamically Expandable Representation for Class Incremental Learning[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 3013-3022.
|
[30] |
MARRA F, SALTORI C, BOATO G, et al. Incremental Learning for the Detection and Classification of GAN-Generated Images[C]. Proceedings of the IEEE International Workshop on Information Forensics and Security, 2019: 1-6.
|
[31] |
RÖSSLER A, COZZOLINO D, VERDOLIVA L, et al. FaceForensics++: Learning to Detect Manipulated Facial Images[C]. Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 1-11.
|
[32] |
TORZDF, KVROOMAN, KILROYTHETHIRD. DeepFakes Github[OL]. [2022-10-20] https://github.com/deepfakes/faceswap.
|
[33] |
THIES J, ZOLLHOFER M, STAMMINGER M, et al. Face2face: Real-time Face Capture and Reenactment of RGB Videos[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 2387-2395.
|
[34] |
Marek. FaceSwap[OL].[2022-10-20]. https://github.com/MarekKowalski/FaceSwap.
|
[35] |
THIES J, ZOLLHOFER M, NIESSNER M. Deferred Neural Rendering: Image Synthesis using Neural Textures[J]. ACM Transactions on Graphics, 2019, 38(4): 1-12.
|
[36] |
HE Y N, GAN B, CHEN S Y, et al. ForgeryNet: A Versatile Benchmark for Comprehensive Forgery Analysis[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 4358-4367.
|
[37] |
SRIVASTAVA Y, MURALI V, DUBEY S R. A Performance Comparison of Loss Functions for Deep Face Recognition[EB/OL]. 2019. [2022-10-20]. https://arxiv.org/abs/1901.05903.
|
[38] |
KARRAS T, LAINE S, AILA T. A Style-Based Generator Architecture for Generative Adversarial Networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(12): 4217-4228.
doi: 10.1109/TPAMI.2020.2970919
|
[39] |
KUMAR N, BELHUMEUR P, NAYAR S. FaceTracer: A Search Engine for Large Collections of Images with Faces[C]. Proceedings of the European Conference on Computer Vision, 2008: 340-353.
|
[40] |
LI Y Z, YANG X, SUN P, et al. Celeb-DF: A Large-Scale Challenging Dataset for DeepFake Forensics[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 3207-3216.
|
[41] |
KUMAR N, BERG A C, BELHUMEUR P N, et al. Attribute and Simile Classifiers for Face Verification[C]. Proceedings of the IEEE International Conference on Computer Vision, 2009: 365-372.
|
[42] |
ZHANG Z P, LUO P, LOY C, et al. Facial Landmark Detection by Deep Multi-task Learning[C]. Proceedings of the European Conference on Computer Vision, 2014: 94-108.
|
[43] |
ROTHE R, TIMOFTE R, GOOL L V. DEX: Deep EXpectation of Apparent Age from a Single Image[C]. Proceedings of the IEEE International Conference on Computer Vision Workshops, 2015: 10-15.
|
[44] |
MEIDINE L T N, GRANGER E, KIRAN M, MORIN L A B. A Comparison of CNN-based Face and Head Detectors for Real-Time Video Surveillance Applications[C]. Proceedings of the International Conference on Image Processing Theory, 2017: 1-7.
|
[45] |
GHAZI M M, EKENEL H K. A Comprehensive Analysis of Deep Learning Based Representation for Face Recognition[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2016: 102-109.
|
[46] |
ZHANG Z F, SONG Y, QI H. Age Progression/Regression by Conditional Adversarial Autoencoder[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 4352-4360.
|
[47] |
CHENG J C, LI Y L, WANG J L, et al. Exploiting Effective Facial Patches for Robust Gender Recognition[J]. Tsinghua Science and Technology, 2019, 24(3): 333-345.
doi: 10.26599/TST.2018.9010090
|
[48] |
DENG J, GUO J, VERVERAS E, et al. RetinaFace: Single-Shot Multi-Level Face Localisation in the Wild[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 5202-5211.
|
[49] |
WELLING M. Herding Dynamical Weights to Learn[C]. Proceedings of the Annual International Conference on Machine Learning, 2009: 1121-1128
|
[50] |
QIAN Y Y, YIN G J, SHENG L, et al. Thinking in Frequency: Face Forgery Detection by Mining Frequency-aware Clues[C]. Proceedings of the European Conference on Computer Vision, 2020: 86-103.
|
[51] |
LUO Y C, ZHANG Y, YAN J C, et al. Generalizing Face Forgery Detection with High-frequency Features[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 16312-16321.
|