| [1] | 周文柏, 张卫明, 俞能海, 等. 人脸视频深度伪造与防御技术综述[J]. 信号处理, 2021, 37(12): 2338-2355. | 
																													
																						| [2] | 张璐, 芦天亮, 杜彦辉. 人脸视频深度伪造检测方法综述[J]. 计算机科学与探索, 2023, 17(1): 1-26. doi: 10.3778/j.issn.1673-9418.2205035
 | 
																													
																						| [3] | 曹申豪, 刘晓辉, 毛秀青, 等. 人脸伪造及检测技术综述[J]. 中国图象图形学报, 2022, 27(4): 1023-1038. | 
																													
																						| [4] | HE K M, ZHANG X Y, REN S Q, et al.  Deep Residual Learning for Image Recognition[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778. | 
																													
																						| [5] | SABOUR S, FROSST N, HINTON G E. Dynamic Routing between Capsules[C]. Proceedings of the Annual Conference on Neural Information Processing Systems, 2016: 3859-3869. | 
																													
																						| [6] | CHOLLET F. Xception: Deep Learning with Depthwise Separable Convolutions[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 1800-1807. | 
																													
																						| [7] | TAN M, LE Q. Efficientnet: Rethinking Model Scaling for Convolutional Neural Networks[C]. Proceedings of the International Conference on Machine Learning, 2019: 6105-6114. | 
																													
																						| [8] | YU Y, NI R, ZHAO Y. Mining Generalized Features for Detecting AI-Manipulated Fake Faces[EB/OL]. [2022-10-20].  https://arxiv.org/abs/2010.14129. | 
																													
																						| [9] | LIU Z, QI X J, TORR P H S. Global Texture Enhancement for Fake Face Detection in the Wild[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 8057-8066. | 
																													
																						| [10] | 杨少聪, 王健, 孙运莲, 等. 多级特征全局一致性的人脸伪造检测[J]. 中国图象图形学报, 2022, 27(9): 2708-2720. | 
																													
																						| [11] | LI L Z, BAO J M, ZHANG T, et al.  Face X-Ray for More General Face Forgery Detection[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 5000-5009. | 
																													
																						| [12] | DANG H, LIU F, STEHOUWER J, et al.  On the Detection of Digital Face Manipulation[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 5780-5789. | 
																													
																						| [13] | 蒋小玉, 刘春晓. 边缘与区域不一致性引导下的图像拼接篡改检测网络[J]. 中国图象图形学报, 2021, 26(10): 2411-2420. | 
																													
																						| [14] | GÜERA D, DELP E J. Deepfake Video Detection using Recurrent Neural Networks[C]. Proceedings of the IEEE International Conference on Advanced Video and Signal Based Surveillance, 2018: 1-6. | 
																													
																						| [15] | AMERINI I, CALDELLI R. Exploiting Prediction Error Inconsistencies through LSTM-based Classifiers to Detect Deepfake Videos[C]. Proceedings of the ACM Workshop on Information Hiding and Multimedia Security, 2020: 97-102. | 
																													
																						| [16] | MASI I, KILLEKAR A, MASCARENHAS R M, et al.  Two-Rranch Recurrent Network for Isolating Deepfakes in Videos[C]. Proceedings of the European Conference on Computer Vision, 2020: 667-684. | 
																													
																						| [17] | FEI J W, XIA Z H, YU P P, et al.  Exposing AI-Generated Videos with Motion Magnification[J]. Multimedia Tools and Applications, 2021, 80: 30789-30802. doi: 10.1007/s11042-020-09147-3
 | 
																													
																						| [18] | LI Y Z, CHANG M C, LYU S W.  In Ictu Oculi: Exposing AI Created Fake Videos by Detecting Eye Blinking[C]. Proceedings of the IEEE International Workshop on Information Forensics and Security, 2018: 1-7. | 
																													
																						| [19] | YANG X, LI Y Z, LYU S. Exposing Deep Fakes Using Inconsistent Head Poses[C]. Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, 2019: 8261-8265. | 
																													
																						| [20] | MATERN F, RIESS C, STAMMINGER M. Exploiting Visual Artifacts to Expose Deepfakes and Face Manipulations[C]. Proceedings of the IEEE Winter Applications of Computer Vision Workshops, 2019: 83-92. | 
																													
																						| [21] | CIFTCI U A, DEMIR I, YIN L. FakeCatcher: Detection of Synthetic Portrait Videos using Biological Signals[C]. Proceedings of the IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020: 1-1. | 
																													
																						| [22] | QI H, GUO Q, JUEFEI-XU F, et al.  DeepRhythm: Exposing DeepFakes with Attentional Visual Heartbeat Rhythms[C]. Proceedings of the ACM International Conference on Multimedia, 2020: 4318-4327. | 
																													
																						| [23] | REBUFFI S A, KOLESNIKOV A, SPERL G, et al.  iCaRL: Incremental Classifier and Representation Learning[C]. Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, 2017: 5533-5542. | 
																													
																						| [24] | HU X T, TANG K H, MIAO C Y, et al.  Distilling Causal Effect of Data in Class-Incremental Learning[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 3956-3965. | 
																													
																						| [25] | LI Z Z, HOIEM D. Learning Without Forgetting[C]. Proceedings of the European Conference on Computer Vision, 2016: 614-629. | 
																													
																						| [26] | KIRKPATRICKA J, PASCANU R, RABINOWITZ N, et al.  Overcoming Catastrophic Forgetting Inneural Networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(13): 3521-3526. | 
																													
																						| [27] | MALLYA A, LAZEBNIK S. PackNet: Adding Multiple Tasks to a Single Network by Iterative Pruning[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 7765-7773. | 
																													
																						| [28] | ZHANG C, SONG N, LIN G, et al.  Few-Shot Incremental Learning With Continually Evolved Classifiers[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 12450-12459. | 
																													
																						| [29] | YAN S P, XIE J W, HE X M. DER: Dynamically Expandable Representation for Class Incremental Learning[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 3013-3022. | 
																													
																						| [30] | MARRA F, SALTORI C, BOATO G, et al.  Incremental Learning for the Detection and Classification of GAN-Generated Images[C]. Proceedings of the IEEE International Workshop on Information Forensics and Security, 2019: 1-6. | 
																													
																						| [31] | RÖSSLER A, COZZOLINO D, VERDOLIVA L, et al.  FaceForensics++: Learning to Detect Manipulated Facial Images[C]. Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 1-11. | 
																													
																						| [32] | TORZDF, KVROOMAN, KILROYTHETHIRD. DeepFakes Github[OL]. [2022-10-20]  https://github.com/deepfakes/faceswap. | 
																													
																						| [33] | THIES J, ZOLLHOFER M, STAMMINGER M, et al.  Face2face: Real-time Face Capture and Reenactment of RGB Videos[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 2387-2395. | 
																													
																						| [34] | Marek. FaceSwap[OL].[2022-10-20].  https://github.com/MarekKowalski/FaceSwap. | 
																													
																						| [35] | THIES J, ZOLLHOFER M, NIESSNER M. Deferred Neural Rendering: Image Synthesis using Neural Textures[J]. ACM Transactions on Graphics, 2019, 38(4): 1-12. | 
																													
																						| [36] | HE Y N, GAN B, CHEN S Y, et al.  ForgeryNet: A Versatile Benchmark for Comprehensive Forgery Analysis[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 4358-4367. | 
																													
																						| [37] | SRIVASTAVA Y, MURALI V, DUBEY S R. A Performance Comparison of Loss Functions for Deep Face Recognition[EB/OL]. 2019. [2022-10-20].  https://arxiv.org/abs/1901.05903. | 
																													
																						| [38] | KARRAS T, LAINE S, AILA T. A Style-Based Generator Architecture for Generative Adversarial Networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(12): 4217-4228. doi: 10.1109/TPAMI.2020.2970919
 | 
																													
																						| [39] | KUMAR N, BELHUMEUR P, NAYAR S. FaceTracer: A Search Engine for Large Collections of Images with Faces[C]. Proceedings of the European Conference on Computer Vision, 2008: 340-353. | 
																													
																						| [40] | LI Y Z, YANG X, SUN P, et al.  Celeb-DF: A Large-Scale Challenging Dataset for DeepFake Forensics[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 3207-3216. | 
																													
																						| [41] | KUMAR N, BERG A C, BELHUMEUR P N, et al.  Attribute and Simile Classifiers for Face Verification[C]. Proceedings of the IEEE International Conference on Computer Vision, 2009: 365-372. | 
																													
																						| [42] | ZHANG Z P, LUO P, LOY C, et al.  Facial Landmark Detection by Deep Multi-task Learning[C]. Proceedings of the European Conference on Computer Vision, 2014: 94-108. | 
																													
																						| [43] | ROTHE R, TIMOFTE R, GOOL L V. DEX: Deep EXpectation of Apparent Age from a Single Image[C]. Proceedings of the IEEE International Conference on Computer Vision Workshops, 2015: 10-15. | 
																													
																						| [44] | MEIDINE L T N, GRANGER E, KIRAN M, MORIN L A B. A Comparison of CNN-based Face and Head Detectors for Real-Time Video Surveillance Applications[C]. Proceedings of the International Conference on Image Processing Theory, 2017: 1-7. | 
																													
																						| [45] | GHAZI M M, EKENEL H K. A Comprehensive Analysis of Deep Learning Based Representation for Face Recognition[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2016: 102-109. | 
																													
																						| [46] | ZHANG Z F, SONG Y, QI H. Age Progression/Regression by Conditional Adversarial Autoencoder[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 4352-4360. | 
																													
																						| [47] | CHENG J C, LI Y L, WANG J L, et al.  Exploiting Effective Facial Patches for Robust Gender Recognition[J]. Tsinghua Science and Technology, 2019, 24(3): 333-345. doi: 10.26599/TST.2018.9010090
 | 
																													
																						| [48] | DENG J, GUO J, VERVERAS E, et al.  RetinaFace: Single-Shot Multi-Level Face Localisation in the Wild[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 5202-5211. | 
																													
																						| [49] | WELLING M. Herding Dynamical Weights to Learn[C]. Proceedings of the Annual International Conference on Machine Learning, 2009: 1121-1128 | 
																													
																						| [50] | QIAN Y Y, YIN G J, SHENG L, et al.  Thinking in Frequency: Face Forgery Detection by Mining Frequency-aware Clues[C]. Proceedings of the European Conference on Computer Vision, 2020: 86-103. | 
																													
																						| [51] | LUO Y C, ZHANG Y, YAN J C, et al.  Generalizing Face Forgery Detection with High-frequency Features[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 16312-16321. |