[1] |
JUMPER, J, EVANS, R, PRITZEL, A, et al. Highly acc-urate protein structure prediction with AlphaFold[J]. Nat-ure, 2021, 596(7873): 583-589.
|
[2] |
NIU, C H, AGGARWAL, K, LI, D, et al. A repeating fast radio burst associated with a persistent radio source[J]. Nat-ure, 2022, 606(7916): 873-877.
|
[3] |
COLLABORATION, E H T, AKIYAMA, K, ALBERDI, A, et al. First Sagittarius A* Event Horizon Telescope Re-sults. II. EHT and Multiwavelength Observations, Data Processing, and Calibration[J]. The Astrophysical Journal Letters, 2022, 930(2): L13.
doi: 10.3847/2041-8213/ac6675
|
[4] |
PETERSEN, A M, AHMED, M E, PAVLIDIS, I. Grand challenges and emergent modes of convergence science[J]. Humanities and Social Sciences Communications, 2021, 8(1): 1-15.
doi: 10.1057/s41599-020-00684-8
|
[5] |
沈志宏, 张晓林, 郑晓欢. PARIS原则: 开放协作环境下科学数据的可用性[J]. 大数据, 2023.DOI: 10.11959/j.issn.2096-0271.2023013.
doi: 10.11959/j.issn.2096-0271.2023013
|
[6] |
康建芳, 张耀南, 王家耀, 等. 黄河流域生态保护与高质量发展体系化科学数据建设与实践[J]. 中国科技资源导刊, 2022, 54(1): 56-65.
|
[7] |
Apache NiFi[EB/OL]. [2022-11-30]. https://nifi.apache.org/.
|
[8] |
朱小杰, 赵子豪, 杜一, 等. 模型驱动的大数据流水线框架PiFlow[J]. 计算机应用, 2020, 40(6): 1638.
doi: 10.11772/j.issn.1001-9081.2019101793
|
[9] |
Apache Airflow[EB/OL]. [2022-11-30]. https://airflow.apache.org/.
|
[10] |
DER AUWERA G A, O’CONNOR B D. Genomics in the cloud: using Docker, GATK, and WDL in Terra[M]. O’Reilly Media, 2020.
|
[11] |
OpenWDL[EB/OL]. [2022-11-30]. https://openwdl.org/.
|
[12] |
DEAN J, GHEMAWAT S. MapReduce: a flexible data pro-cessing tool[J]. Communications of the ACM, 2010, 53 (1): 72-77.
|
[13] |
LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.
doi: 10.1038/nature14539
|
[14] |
BIRD I, CARMINATI F, MOUNT R, et al. Update of the Computing Models of the WLCG and the LHC Exper-iments[R]. 2014.
|
[15] |
FOSTER I. Globus Toolkit Version 4: Software for Ser-vice-Oriented Systems[J]. Journal of Computer Science and Technology, 2006, 21(4): 513-520.
doi: 10.1007/s11390-006-0513-y
|
[16] |
MICHENER W, VIEGLAIS D, VISION T, et al. Data-ONE: Data observation network for earth-preserving data and enabling innovation in the biological and envir-onmental sciences[J]. D-Lib Magazine, 2011, 17(1-2).
|
[17] |
GIULIANI G, RAY N, SCHWARZER S, et al. Sharing Environmental Data through GEOSS[J]. Emerging Meth-ods and Multidisciplinary Applications in Geospatial Research, 2013: 266-281.
|
[18] |
黄铁青, 牛栋. 中国生态系统研究网络(CERN):概况、成就和展望[J]. 地球科学进展, 2005, 20(8): 895.
doi: 10.11867/j.issn.1001-8166.2005.08.0895
|
[19] |
GAIA-X - Home[EB/OL]. [2022-11-30]. https://www.data-infrastructure.eu/GAIAX.
|
[20] |
GO FAIR initiative: Make your data & services FAIR[EB/OL]. [2022-11-30]. https://www.go-fair.org/.
|
[21] |
ZAHARIA M, FRANKLIN M J, GHODSI A, et al. Apa-che Spark: a unified engine for big data processing[J]. Communications of the ACM, 2016, 59(11): 56-65.
|
[22] |
CARBONE P, KATSIFODIMOS A, EWEN S, et al. Apache Flink: Stream and Batch Processing in a Single Engine[J]. Bulletin of the IEEE Computer Society Technical Com-mittee on Data Engineering, 2015, 36(4).
|
[23] |
IHAKA R, GENTLEMAN R. R: A Language for Data Analysis and Graphics[J]. Journal of Computational and Graphical Statistics, 1996, 5(3): 299-314.
|
[24] |
MCKINNEY W. pandas: a Foundational Python Library for Data Analysis and Statistics[J]. Python for high per-formance and scientific computing, 2011, 14(9): 1-9.
|
[25] |
PASZKE A, GROSS S, MASSA F, et al. PyTorch: An Im-perative Style, High-Performance Deep Learning Library[J]. Advances in Neural Information Processing Systems, 2019, 32.
|
[26] |
ABADI M, BARHAM P, CHEN J, et al. TensorFlow: A System for Large-Scale Machine Learning[C]// Pro-ceedings of the 12th USENIX Symposium on Oper-ating Systems Design and Implementation, 2016: 265-283.
|