| [1] |
JOSHI S M. FFT architectures: a review[J]. International Journal of Computer Applications, 2015, 116(7).
|
| [2] |
RAO K R, KIM D N, HWANG J J. Fast Fourier Transform: Algorithms and Applications[M]. Springer Science & Business Media, 2011.
|
| [3] |
KUMAR M A, CHAKRAPANI A. Classification of ECG signal using FFT based improved Alexnet classifier[J]. PLOS ONE, 2022, 17(9): e0274225.
|
| [4] |
VAN N N H, DO P H, HOANG V N, et al. Leveraging FFT and hybrid EfficientNet for enhanced action recognition in video sequences[C]// Proceedings of the 12th International Symposium on Information and Co mmunication Technology, 2023: 32-39.
|
| [5] |
李亚美, 陈莉丽, 王锋, 等. 基于异构编程模型的FFT算法实现和优化[J]. 智能安全, 2023, 2(4): 24-34.
|
| [6] |
COOLEY J W, TUKEY J W. An algorithm for the machine calculation of complex Fourier series[J]. Mathematics of Computation, 1965, 19(90): 297-301.
|
| [7] |
LU Q, WANG X, MA W, et al. GFFT: A task graph based fast Fourier transform optimization framework[C]// Proceedings of the 52nd International Conference on Parallel Processing, 2023: 513-523.
|
| [8] |
DE DINECHIN B D, HASCOëT J, DESRENTES O. InPlace Multicore SIMD Fast Fourier Transforms[C]// 2023 IEEE High Performance Extreme Computing Conference (HPEC). IEEE, 2023: 1-6.
|
| [9] |
HU Y, LU L, LI C. Memory-accelerated parallel method for multidimensional fast Fourier implementation on GPU[J]. The Journal of Supercomputing, 2022, 78(16): 18189-18208.
|
| [10] |
HAO Y, LIU F, MA W, et al. MFFT: A GPU accelerated highly efficient mixed-precision large-scale FFT framework[J]. ACM Transactions on Architecture and Code Optimization, 2023, 20(3): 1-23.
|
| [11] |
PISHA L, LIGOWSKI Ł. Accelerating non-power-of-2 size Fourier transforms with GPU tensor cores[C]// 2021 IEEE International Parallel and Distributed Processing Symposium (IPDPS). IEEE, 2021: 507-516.
|
| [12] |
NVIDIA Corporation. cufft documentation v12.5.0[M/OL]. 2023. [2024-11-05]. https://developer.nvidia.com/cufft/archive/12.5.0/cufft/index.html.
|
| [13] |
ZHANG Z, HU N, ZHOU L. An efficient multi-step parallel fft algorithm on gpu[C]// International Conference on Algorithms, High Performance Computing, and Artificial Intelligence (AHPCAI 2024): volume 13403. SPIE, 2024: 66-72.
|
| [14] |
NVIDIA Corporation. Cuda c programming guide[M/OL]. NVIDIA Corporation, 2024. [20241101]. https://docs.nvidia.com/cuda/cudacprogrammingguide/index.html.
|
| [15] |
AMD. rocfft documentation 1.0.31[EB/OL]. 2024. [2-0241105]. https://rocm.docs.amd.com/projects/roc-FFT/en/latest/index.html.
|
| [16] |
AMD. Hip documentation[EB/OL]. 2024. [202411-05]. https://rocm.docs.amd.com/projects/HIP/en/lat est/index.html.
|
| [17] |
clMath Libraries. clfft: Opencl fast fourier transforms[EB/OL]. 2016.[20241105]. https://clmathlibraries.github.io/clFFT/.
|
| [18] |
FRIGO M, JOHNSON S G. Fftw:The fastest fourier transform in the west[EB/OL]. [20241105]. https://www.fftw.org/.
|
| [19] |
GROUP K. OpenCL documentation[EB/OL]. [2024-11-05]. https://www.khronos.org/opencl/.
|
| [20] |
LI B, CHENG S, LIN J. tcfft: A fast half-precision FFT library for NVIDIA tensor cores[C]// 2021 IEEE International Conference on Cluster Computing (CL USTER). IEEE, 2021: 1-11.
|
| [21] |
TOLMACHEV D. VkFFTa performant, crossplatform and open-source GPU FFT library[J]. IEEE Access, 2023, 11: 12039-12058.
|
| [22] |
VIZCAINO P, MANTOVANI F, FERRER R, et al. Acceleration with long vector architectures: Impleme-ntation and evaluation of the FFT kernel on NEC SX-Aurora and RISC-V vector extension[J]. Concurrency and Computation: Practice and Experience, 2023, 35(20): e7424.
|
| [23] |
贾珍珍, 杨凌, 黄立波, 等. 开源GPU研究综述[J]. 小型微型计算机系统, 2024, 45(9): 2294-2304.
|
| [24] |
ROSENFELD V, BREß S, MARKL V. Query processing on heterogeneous CPU/GPU systems[J]. ACM Computing Surveys (CSUR), 2022, 55(1): 1-38.
|
| [25] |
DALLY W J, KECKLER S W, KIRK D B. Evolution of the graphics processing unit (gpu)[J]. IEEE Micro, 2021, 41(6): 42-51.
|
| [26] |
JEON H, RAVI G S, KIM N S, et al. Gpu register file virtualization[C]// Proceedings of the 48th International Symposium on Microarchitecture, 2015: 420-432.
|
| [27] |
DASHTI M, FEDOROVA A. Analyzing memory ma-nagement methods on integrated CPU-GPU systems[C]// Proceedings of the 2017 ACM SIGPLAN International Symposium on Memory Management, 2017: 59-69.
|
| [28] |
KIM D H. Evaluation of the performance of GPU global memory coalescing[J]. Evaluation, 2017, 4(4): 1-5.
|
| [29] |
赵翔, 贾海鹏, 张云泉, 等. 基于ARMv8处理器的实数FFT实现与性能优化研究[J]. 计算机学报, 2023, 46(5): 1003-1018.
|