[1] |
Khanal S S, Prasad P W C, Alsadoon A, et al. A syste-matic review: machine learning based recommendation systems for e-learning[J]. Education and Information Technologies, 2020, 25(4): 2635-2664.
doi: 10.1007/s10639-019-10063-9
|
[2] |
Yu T, Li J, Yu Q, et al. Knowledge graph for TCM health preservation: Design, construction, and applications[J]. Artificial intelligence in medicine, 2017, 77(3): 48-52.
doi: 10.1016/j.artmed.2017.04.001
|
[3] |
Cao Y, Wang X, He X, et al. Unifying knowledge graph learning and recommendation: Towards a better under-standing of user preferences[C]// The world wide web conference, 2019: 151-161.
|
[4] |
Rizun M. Knowledge Graph Application in Education: a Literature Review[J]. Acta Universitatis Lodziensis Folia oeconomica, 2019, 3(342):7-19.
|
[5] |
Huang X, Zhang J, Li D, et al. Knowledge graph embe-dding based question answering[C]// Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining, 2019: 105-113.
|
[6] |
Ji S, Pan S, Cambria E, et al. A survey on knowledge graphs: Representation, acquisition, and applications[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 33(2): 494-514.
doi: 10.1109/TNNLS.2021.3070843
|
[7] |
Zou X. A survey on application of knowledge graph[C]// Journal of Physics: Conference Series, IOP Publishing, 2020, 1487(1): 12-16.
|
[8] |
Ling T. Knowledge graph survey: representation, cons-truction, reasoning and knowledge hypergraph theory[J]. Journal of Computer Applications, 2021, 41(8): 21-61.
|
[9] |
Lin J, Zhao Y, Huang W, et al. Domain knowledge graph-based research progress of knowledge representation[J]. Neural Computing and Applications, 2021, 33(2): 681-690.
doi: 10.1007/s00521-020-05057-5
|
[10] |
Sharma M, Sharma V D, Bundele M M. erformance analysis of RDBMS and no SQL databases: PostgreSQL, MongoDB and Neo4j[C]// 2018 3rd International Conf-erence and Workshops on Recent Advances and Innovat-ions in Engineering (ICRAIE), IEEE, 2018: 1-5.
|
[11] |
Fernandes D, Bernardino J. Graph Databases Compar-ison: AllegroGraph, ArangoDB, InfiniteGraph, Neo4J, and OrientDB[C]// Data, 2018: 373-380.
|
[12] |
王鑫, 邹磊, 王朝坤, 彭鹏, 冯志勇. 知识图谱数据管理研究综述[J]. 软件学报, 2019, 30(07):2139-2174.
|
[13] |
Liu J, Duan L. A survey on knowledge graph-based recommender systems[C]// 2021 IEEE 5th Advanced Inf-ormation Technology, Electronic and Automation Control Conference (IAEAC), IEEE, 2021, 5: 2450-2453.
|
[14] |
Wang H, Zhang F, Wang J, et al. Ripplenet: Propagating user preferences on the knowledge graph for recommen-der systems[C]// Proceedings of the 27th ACM Internati-onal Conference on Information and Knowledge Mana-gement, 2018: 417-426.
|
[15] |
秦川, 祝恒书, 庄福振, 郭庆宇, 张琦, 张乐, 王超, 陈恩红, 熊辉. 基于知识图谱的推荐系统研究综述[J]. 中国科学:信息科学, 2020, 50(07):937-956.
|
[16] |
刘知远, 孙茂松, 林衍凯, 谢若冰. 知识表示学习研究进展[J]. 计算机研究与发展, 2016, 53(02):247-261.
|
[17] |
Cai H, Zheng V W, Chang K C C. A comprehensive sur-vey of graph embedding: Problems, techniques, and applications[J]. IEEE Transactions on Knowledge and Data Engineering, 2018, 30(9): 1616-1637.
doi: 10.1109/TKDE.2018.2807452
|
[18] |
Wang Z, Zhang J, Feng J, et al. Knowledge graph embed-ding by translating on hyperplanes[C]// Proceedings of the AAAI Conference on Artificial Intelligence, 2014, 28(1): 1112-1119.
|
[19] |
Lin Y, Liu Z, Sun M, et al. Learning entity and relation embeddings for knowledge graph completion[C]// Twe-nty-ninth AAAI conference on artificial intelligence, 2015: 2181-2187.
|
[20] |
Xiao H, Huang M, Hao Y, et al. TransA: An Adaptive Approach for Knowledge Graph Embedding[J/OL]. arXiv preprint arXiv:1509.05490, 2015.
|
[21] |
Han X, Huang M, Zhu X. TransG : A Generative Model for Knowledge Graph Embedding[C]// Proceedings of the 54th Annual Meeting of the Association for Com-putational Linguistics (Volume 1: Long Papers), 2016: 2316-2325.
|
[22] |
Dai Y, Wang S, Xiong N N, et al. A survey on knowledge graph embedding: Approaches, applications and bench-marks[J]. Electronics, 2020, 9(5): 750-779.
doi: 10.3390/electronics9050750
|
[23] |
Sun Z, Deng Z H, Nie J Y, et al. Rotate: Knowledge graph embedding by relational rotation in complex space[J]. CoRR, 2019, abs/1902.10197.
|
[24] |
Zhou X, Yi Y, Jia G. Path-RotatE: Knowledge Graph Embedding by Relational Rotation of Path in Complex Space[C]// 2021 IEEE/CIC International Conference on Communications in China (ICCC), IEEE, 2021: 905-910.
|
[25] |
Song Y, Wang X, Quan W, et al. A new approach to construct similarity measure for intuitionistic fuzzy sets[J]. Soft Computing, 2019, 23(6): 1985-1998.
doi: 10.1007/s00500-017-2912-0
|