Frontiers of Data and Computing ›› 2020, Vol. 2 ›› Issue (1): 128-141.
doi: 10.11871/jfdc.issn.2096-742X.2020.01.011
Special Issue: “高性能与高通量计算及应用”专刊
Received:
2019-11-29
Online:
2020-02-20
Published:
2020-03-28
Contact:
Tian Ziqi
E-mail:tianziqi@nimte.ac.cn
Qian Xu,Tian Ziqi. The Application of Materials Genome Approach in Materials Design[J]. Frontiers of Data and Computing, 2020, 2(1): 128-141.
[1] | S. Curtarolo, G. L. Hart, M. B. Nardelli, N. Mingo, S. Sanvito and O. Levy . The high-throughput highway to computational materials design[J]. Nature Materials. 2013, 12, pp. 191-201. |
[2] | S. Curtarolo, D. Morgan, K. Persson, J. Rodgers and G. Ceder. Predicting Crystal Structures with Data Mining of Quantum Calculations[J]. Physical Review Letters. 2003, 91, pp. 135503. |
[3] | W. Setyawan and S. Curtarolo. High-throughput electronic band structure calculations: Challenges and tools[J]. Computational Materials Science. 2010, 49, pp. 299-312. |
[4] | A. Jain, G. Hautier, C. J. Moore, S. Ping Ong, C. C. Fischer, T. Mueller, K. A. Persson and G. Ceder . A high-throughput infrastructure for density functional theory calculations[J]. Computational Materials Science. 2011, 50, pp. 2295-2310. |
[5] | S. Wang, W. Zhao, W. Setyawan, N. Mingo and S. Curtarolo. Assessing the Thermoelectric Properties of Sintered Compounds via High-Throughput Ab-Initio Calculations[J]. Physical Review X. 2011, 1, pp. 1160-1164. |
[6] | J. K. Norskov, T. Bligaard, J. Rossmeisl and C. H. Christensen. Towards the computational design of solid catalysts[J]. Nature Chemistry. 2009, 1, pp. 37-46. |
[7] | A. Vojvodic and J. K. Norskov. New design paradigm for heterogeneous catalysts[J]. National Science Review. 2015, 2, pp. 140-143. |
[8] | Z. Li, S. Wang, W. S. Chin, L. E. Achenie and H. Xin . High-throughput screening of bimetallic catalysts enabled by machine learning[J]. Journal of Materials Chemistry A. 2017, 5, pp. 24131-24138. |
[9] | R. Jinnouchi, H. Hirata and R. Asahi . Extrapolating Energetics on Clusters and Single Crystal Surfaces to Nanoparticles by Machine-Learning Scheme[J]. Journal of Physical Chemistry C. 2017, pp. 26397-26405. |
[10] | R. Jinnouchi and R. Asahi . Predicting Catalytic Activity of Nanoparticle by DFT-aided Machine-Learning Algorithm[J]. Journal of Physical Chemistry Letters. 2017, pp. 4279-4283. |
[11] | T. Toyao, K. Suzuki, S. Kikuchi, S. Takakusagi, K.-I. Shimizu and I. Takigawa . Towards Effective Utilization of Methane: Machine Learning Prediction of Adsorption Energies on Metal Alloys[J]. Journal of Physical Chemistry C. 2018, pp. 8315-8326. |
[12] | Z. W. Ulissi, M. T. Tang, J. Xiao, X. Liu, D. A. Torelli, M. Karamad, K. Cummins, C. Hahn, N.S. Lewis and T. F. Jaramillo . Machine-Learning Methods Enable Exhaustive Searches for Active Bimetallic Facets and Reveal Active Site Motifs for CO2 Reduction[J]. Acs Catalysis. 2017, pp. 6600-6608. |
[13] | Kevin, Tran, Zachary, W. and Ulissi. Active learning across intermetallics to guide discovery of electrocatalysts for CO 2 reduction and H 2 evolution[J]. Nature Catalysis. 2018, pp. 696-703. |
[14] | J. H. Montoya and K. A. Persson . A high-throughput framework for determining adsorption energies on solid surfaces[J]. Npj Computational Materials. 2017, 3, pp. 14. |
[15] | Jacob, Boes, Osman, Mamun, Kirsten Winther, Thomas and Bligaard. Graph Theory Approach to High-Throughput Surface Adsorption Structure Generation[J]. Journal of Physical Chemistry. A. 2019, pp. 2281-2285. |
[16] | O. Mamun, K. T. Winther, J.R. Boes and T. Bligaard. High-throughput calculations of catalytic properties of bimetallic alloy surfaces[J]. Scientific Data. 2019, 6, pp. 76. |
[17] | K. T. Winther, M. J. Hoffmann, J. R. Boes, O. Mamun, M. Bajdich and T. Bligaard. Catalysis-Hub.org, an open electronic structure database for surface reactions[J]. Scientific Data. 2019, 6, pp. 75. |
[18] | A. J. Medford, C. Shi, M. J. Hoffmann, A. C. Lausche, S. R. Fitzgibbon, T. Bligaard and J. K. Norskov. CatMAP: A Software Package for Descriptor-Based Microkinetic Mapping of Catalytic Trends[J]. Catalysis Letters. 2015, 145, pp. 794-807. |
[19] | J. A. Garrido Torres, P. C. Jennings, M. H. Hansen, J. R. Boes and T. Bligaard. Low-Scaling Algorithm for Nudged Elastic Band Calculations Using a Surrogate Machine Learning Model[J]. Physical Review Letters. 2019, 122, pp. 156001. |
[20] | H. C. Zhou, J. R. Long and O. M. Yaghi . Introduction to metal-organic frameworks[J]. Chemical Reviews. 2012, 112, pp. 673-4. |
[21] | Y. J. Colon and R. Q. Snurr . High-throughput computational screening of metal-organic frameworks[J]. Chemical Society Reviews. 2014, 43, pp. 5735-49. |
[22] | F. H. Allen . The Cambridge Structural Database: a quarter of a million crystal structures and rising[J]. Acta Crystallographica Section B-Structural Science. 2002, 58, pp. 380-388. |
[23] | T. Watanabe and D. S. Sholl. Accelerating Applications of Metal-Organic Frameworks for Gas Adsorption and Separation by Computational Screening of Materials[J]. Langmuir. 2012, 28, pp. 14114-14128. |
[24] | J. Goldsmith, A. G. Wong-Foy, M. J.. Cafarella and D. J. Siegel . Theoretical Limits of Hydrogen Storage in Metal-Organic Frameworks: Opportunities and Trade-Offs[J]. Chemistry of Materials. 2013, 25, pp. 3373-3382. |
[25] | G. Avci, S. Velioglu and S. Keskin. High-Throughput Screening of MOF Adsorbents and Membranes for H2 Purification and CO2 Capture[J]. ACS Appl Mater Interfaces. 2018, 10, pp. 33693-33706. |
[26] | Altintas, Cigdem, Erucar, Ilknur, Keskin and Seda. High-Throughput Computational Screening of the Metal Organic Framework Database for CH4/H-2 Separations[J]. ACS Applied Materials & Interfaces. 2018, 10, pp. 3668-3679. |
[27] | A. N. V. Azar, S. Velioglu and S. Keskin . Large-Scale Computational Screening of Metal Organic Framework (MOF) Membranes and MOF-Based Polymer Membranes for H2/N2 Separations[J]. ACS Sustainable Chemistry & Engineering. 2019, 7, pp. 9525-9536. |
[28] | H. Daglar and S. Keskin. High-Throughput Screening of Metal Organic Frameworks as Fillers in Mixed Matrix Membranes for Flue Gas Separation[J]. Advanced Theory and Simulations. 2019, 2, pp. 1900109. |
[29] | Z. Qiao, Q. Xu and J. Jiang. High-throughput computational screening of metal-organic framework membranes for upgrading of natural gas[J]. Journal of Membrane Science. 2018, 551, pp. 47-54. |
[30] | C. E. Wilmer, M. Leaf, C. Y. Lee, O. K. Farha, B. G. Hauser, J. T. Hupp and R. Q. Snurr . Large-scale screening of hypothetical metal-organic frameworks[J]. Nature Chemistry. 2011, 4, pp. 83-89. |
[31] | D. A. Gómez-Gualdrón, C. E. Wilmer, O. K. Farha, J. T. Hupp and R. Q. Snurr . Exploring the Limits of Methane Storage and Delivery in Nanoporous Materials[J]. Journal of Physical Chemistry C. 2014, 118, pp. 6941-6951. |
[32] | P. D. H. J. Goldsmid B, . Sc, F.Inst.P. Thermoelectric Refrigeration[J]. Electrical Engineering. 2013, 79, pp. 380-384. |
[33] | G. K. H. Madsen and D. J. BoltzTraP . A code for calculating band-structure dependent quantities[J]. Computer Physics Communications. 2006, 175, pp. 67-71. |
[34] | L. Xi, S. Pan, X. Li, Y. Xu and W. Zhang. Discovery of High Performance Thermoelectric Chalcogenides through Reliable High Throughput Material Screening[J]. Journal of the American Chemical Society. 2018, 140, pp. 10785-10793. |
[35] | R.-z. Zhang, K. Chen, B. Du and M. J. Reece. Screening for Cu-S based thermoelectric materials using crystal structure features[J]. Journal of Materials Chemistry A. 2017, 5, pp. 5013-5019. |
[36] | Robert W. McKinney, P. Gorai, V. Stevanović and E. S. Toberer . Search for new thermoelectric materials with low Lorenz number[J]. Journal of Materials Chemistry A. 2017, 5, pp. 17302-17311. |
[37] | S. Guo, T. Jia and Y. Zhang. Electrical Property Dominated Promising Half-Heusler Thermoelectrics through High-Throughput Material Computations[J]. The Journal of Physical Chemistry C. 2019, 123, pp. 18824-18833. |
[38] | C. Wei, J. H. Pohls, G. Hautier, D. Broberg, S. Bajaj, U. Aydemir, Z. M. Gibbs, Z. Hong, M. Asta and G. J. Snyder. Understanding Thermoelectric Properties from High-Throughput Calculations: Trends, Insights, and Comparisons with Experiment[J]. Journal of Materials Chemistry C. 2016, 4, pp. 4414-4426. |
[39] | J. Carrete, L. Wu, N. Mingo, S. Wang and S. Curtarolo. Finding Unprecedentedly Low-Thermal-Conductivity Half-Heusler Semiconductors via High-Throughput Materials Modeling[J]. Physical Review X. 2014, 4, pp. 186-187. |
[40] | A. Seko, A. Togo, H. Hayashi, K. Tsuda, L. Chaput and I. Tanaka. Prediction of Low-Thermal-Conductivity Compounds with First-Principles Anharmonic Lattice-Dynamics Calculations and Bayesian Optimization[J]. Physical Review Letters. 2015, 115, pp. 205901. |
[41] | P. Gorai, V. Stevanovic and E. S. Toberer. Computationally guided discovery of thermoelectric materials[J]. Nature Reviews Materials. 2017, 2, pp. 17053. |
[42] | J. B. Goodenough and Y. Kim. Challenges for Rechargeable Li Batteries[J]. Chemistry of Materials. 2010, 22, pp. 587-603. |
[43] | G. Hautier, A. Jain, H. Chen, C. Moore, S.P. Ong and G. Ceder. Novel mixed polyanions lithium-ion battery cathode materials predicted by high-throughput ab initio computations[J]. Journal of Materials Chemistry. 2011, 21, pp. 17147. |
[44] | A. Jain, G. Hautier, S. P. Ong, S. Dacek and G. Ceder. Relating voltage and thermal safety in Li-ion battery cathodes: a high-throughput computational study[J]. Physical Chemistry Chemical Physics. 2015, 17, pp. 5942-5953. |
[45] | W. Zhang, D. M. Cupid, P. Gotcu, K. Chang, D. Li, Y. Du and H. J. Seifert. High-Throughput Description of Infinite Composition-Structure-Property-Performance Relationships of Lithium-Manganese Oxide Spinel Cathodes[J]. Chemistry of Materials. 2018, 30, pp. 2287-2298. |
[46] | K. Chang, B. Hallstedt and D. Music. Thermodynamic description of the LiNiO 2 -NiO 2 pseudo-binary system and extrapolation to the Li(Co,Ni)O 2 -( Co,Ni)O 2 system[J]. CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry. 2012, 37, pp. 0-107. |
[47] | S. Kirklin, B. Meredig and C. Wolverton. High-Throughput Computational Screening of New Li-Ion Battery Anode Materials[J]. Advanced Energy Materials. 2013, 3, pp. 252-262. |
[48] | K. Edström, T. Gustafsson and J. O. Thomas. The cathode-electrolyte interface in the Li-ion battery[J]. Electrochimica Acta. 2004, 50, pp. 397-403. |
[49] | M. Aykol, S. Kim, V. I. Hegde, D. Snydacker, Z. Lu, S. Hao, S. Kirklin, D. Morgan and C. Wolverton. High-throughput computational design of cathode coatings for Li-ion batteries[J]. Nature Communications. 2016, 7, pp. 13779. |
[50] | M. Saliba, T. Matsui, J. Y. Seo, K. Domanski, J. P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt and M. Gratzel. Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency[J]. Energy & Environmental Science. 2016, 9, pp. 1989-1997. |
[51] | M. Lyu, J. H. Yun, C. Peng, M. Hao and L. Wang. Addressing Toxicity of Lead: Progress and Applications of Low‐Toxic Metal Halide Perovskites and Their Derivatives[J]. Advanced Energy Materials. 2017, 7, pp. 1602512. |
[52] | S. Chakraborty, W. Xie, N. Mathews, M. Sherburne, R. Ahuja, M. Asta and S. G. Mhaisalkar. Rational Design: A High-Throughput Computational Screening and Experimental Validation Methodology for Lead-Free and Emergent Hybrid Perovskites[J]. ACS Energy Letters. 2017, 2, pp. 837-845. |
[53] | T. Nakajima and K. Sawada. Discovery of Pb-Free Perovskite Solar Cells via High-Throughput Simulation on the K Computer[J]. Journal of Physical Chemistry Letters. 2017, 8, pp. 4826-4831. |
[54] | Y. Li and K. Yang. High-throughput computational design of organic-inorganic hybrid halide semiconductors beyond perovskites for optoelectronics[J]. Energy & Environmental Science. 2019, 12, pp. 2233-2243. |
[55] | P. V. Balachandran, A. A. Emery, J. E. Gubernatis, T. Lookman, C. Wolverton and A. Zunger. Predictions of new ABO3 perovskite compounds by combining machine learning and density functional theory[J]. Physical Review Materials. 2018, 2, pp. 043802. |
[56] | W. Li, R. Jacobs and D. Morgan. Predicting the thermodynamic stability of perovskite oxides using machine learning models[J]. Computational Materials Science. 2018, 150, pp. 454-463. |
[57] | A. Jain, S. P. Ong, G. Hautier, C. Wei and K. A. Persson. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation[J]. Apl Materials. 2013, 1, pp 011002. |
[58] | T. Xie and J. C. Grossman. Crystal Graph Convolutional Neural Networks for an Accurate and Interpretable Prediction of Material Properties[J]. Phys Rev Lett. 2018, 120, pp. 145301. |
[59] | Z. Z. Li, Q. C. Xu, Q. D. Sun, Z.F. Hou and W. J. Yin. Thermodynamic Stability Landscape of Halide Double Perovskites via High-Throughput Computing and Machine Learning[J]. Advanced Functional Materials. 2019, 29, pp. 1807280. |
[60] | S. Lu, Q. Zhou, Y. Ouyang, Y. Guo, Q. Li and J. Wang. Accelerated discovery of stable lead-free hybrid organic-inorganic perovskites via machine learning[J]. Nature Communications. 2018, 9, pp. 3405. |
[61] | S. H. Lu, Q. H. Zhou, L. Ma, Y. Guo and J. L. Wang. Rapid Discovery of Ferroelectric Photovoltaic Perovskites and Material Descriptors via Machine Learning[J]. Small Methods. 2019, 3, pp. 1900360. |
[1] | ZHAO Zhongbin,CAI Manchun,LU Tianliang. Network Malicious Traffic Detection Incorporating Multi-Head Attention Mechanism [J]. Frontiers of Data and Computing, 2022, 4(5): 60-67. |
[2] | WEI Ting,ZHANG Honghai,LIN Xiaoli,ZHANG Leilei,WANG Yan,JIA Jinfeng. Predictive Model of the Revisit Behavior of Cloud Service Site Users [J]. Frontiers of Data and Computing, 2022, 4(3): 124-130. |
[3] | SUN Yongqian,ZHANG Ruru,LIN Zihan,ZHANG Shenglin,TAN Zhiyuan,ZHANG Yuzhi. Evaluation of KPI Anomaly Detection Methods [J]. Frontiers of Data and Computing, 2022, 4(3): 46-65. |
[4] | ZHANG Yining,HE Hongbo,WANG Runqiang. A Survey on Popular Digital Audio Prediction Techniques [J]. Frontiers of Data and Computing, 2021, 3(4): 81-92. |
[5] | PU Jiansu,ZHU Zhengguo,SHAO Hui,GAO Boyang,ZHU Yanlin,YAN Zongkai,XIANG Yong. Screening and Predication of Solid Electrolyte Based on Visualization [J]. Frontiers of Data and Computing, 2021, 3(4): 18-29. |
[6] | ZHANG Shuying,HAN Xinyin,HE Xiaoyu,YUAN Danyang,LUAN Haijing,LI Ruilin,HE Jiayin,NIU Beifang. Review of Genomic Microsatellite Status Detection Based on Machine Learning [J]. Frontiers of Data and Computing, 2021, 3(3): 126-135. |
[7] | XIAO Jianping,LONG Chun,ZHAO Jing,WEI Jinxia,HU Anlei,DU Guanyao. A Survey on Network Intrusion Detection Based on Deep Learning [J]. Frontiers of Data and Computing, 2021, 3(3): 59-74. |
[8] | GUO Jialong,WANG Zongguo,WANG Yangang,ZHAO Xushan,SU Yanjing,LIU Zhiwei. A Review of Material Research and Development Methods Based on Computer Technology [J]. Frontiers of Data and Computing, 2021, 3(2): 120-132. |
[9] | Ren Huiying,Wang Jing,Wang Yangang. Turbulence Modeling Based on AutoML [J]. Frontiers of Data and Computing, 2020, 2(4): 121-131. |
[10] | Li Zixin,Zhang Neng,Xiong Bin,Hu Yunfeng,Zhao Xinpeng,Huang Haiyou. Materials Science Database in Material Research and Development: Recent Applications and Prospects [J]. Frontiers of Data and Computing, 2020, 2(2): 78-90. |
[11] | Chu Zhongming, Xiao Dengjie, Qiao Yusi, Wan Jinyu. Machine Learning Applications for Particle Accelerators [J]. Frontiers of Data and Computing, 2019, 1(2): 110-120. |
[12] | Zhipeng Zhang,Jiawei Jiang,Lele Yu,Bin Cui. Angel +: A Large-Scale Machine Learning Platform on Angel [J]. Frontiers of Data and Computing, 2019, 1(1): 63-72. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||