Frontiers of Data and Computing ›› 2022, Vol. 4 ›› Issue (3): 46-65.
CSTR: 32002.14.jfdc.CN10-1649/TP.2022.03.004
doi: 10.11871/jfdc.issn.2096-742X.2022.03.004
• Special Issue: Advanced Intelligent Computing Platform and Application • Previous Articles Next Articles
SUN Yongqian1,2(),ZHANG Ruru1(),LIN Zihan1(),ZHANG Shenglin1,2,3,*(),TAN Zhiyuan1(),ZHANG Yuzhi1,2,3()
Received:
2022-02-14
Online:
2022-06-20
Published:
2022-06-20
Contact:
ZHANG Shenglin
E-mail:sunyongqian@nankai.edu.cn;1852917912@qq.com;2120210568@mail.nankai.edu.cn;zhangsl@nankai.edu.cn;bhbean42@qq.com;zyz@nankai.edu.cn
SUN Yongqian,ZHANG Ruru,LIN Zihan,ZHANG Shenglin,TAN Zhiyuan,ZHANG Yuzhi. Evaluation of KPI Anomaly Detection Methods[J]. Frontiers of Data and Computing, 2022, 4(3): 46-65, https://cstr.cn/32002.14.jfdc.CN10-1649/TP.2022.03.004.
Table 1
Summary of Key performance indicators (KPI) anomaly detection methods"
需要标注 | 人工调参 | 方法技术 | 适用KPI类型 | 输出 | 发表年份 | |
---|---|---|---|---|---|---|
Opprentice | √ | 否 | 随机森林 | 通用 | 离散值 | 2015 |
ADS | √ | 否 | 聚类和随机森林 | 通用 | 离散值 | 2018 |
PUAD | √ | 否 | 聚类和PU学习[ | 通用 | 离散值 | 2021 |
iForest | × | 部分 | 孤立森林 | 通用 | 离散值 | 2013 |
OCSVM | × | 部分 | 支持向量机 | 通用 | 离散值 | 2013 |
Donut | × | 否 | 深度生成模型 | 周期 | 连续值 | 2018 |
Bagel | × | 否 | 深度生成模型 | 周期 | 连续值 | 2018 |
DeepAnT | × | 否 | 卷积神经网络 | 周期 | 连续值 | 2018 |
FuseAD | × | 否 | 统计和卷积神经网络 | 周期 | 连续值 | 2019 |
ARIMA | × | 是 | 统计 | 通用 | 离散值 | 2005 |
EWMA | × | 是 | 统计 | 通用 | 离散值 | 2003 |
Wavelet | × | 是 | 统计 | 通用 | 离散值 | 2002 |
Holt-Winters | × | 是 | 统计 | 通用 | 离散值 | 2012 |
Table 3
Comparison of result of key performance indicator anomaly detection methods on different datasets"
A | B | C | |||||||
---|---|---|---|---|---|---|---|---|---|
Precision | Recall | F1-score | Precision | Recall | F1-score | Precision | Recall | F1-score | |
ARIMA | 0.91 | 0.55 | 0.68 | 0.57 | 0.55 | 0.56 | 0.70 | 0.81 | 0.75 |
EWMA | 0.91 | 0.55 | 0.69 | 0.40 | 0.55 | 0.46 | 0.70 | 0.82 | 0.75 |
Wavelet | 0.69 | 0.40 | 0.51 | 0.47 | 0.42 | 0.44 | 0.43 | 0.77 | 0.55 |
Holt-winters | 0.60 | 0.51 | 0.55 | 0.25 | 0.34 | 0.29 | 0.62 | 0.77 | 0.69 |
Opprentice | 0.72 | 0.69 | 0.70 | 0.98 | 0.85 | 0.91 | 0.76 | 0.83 | 0.79 |
ADS | 0.55 | 0.74 | 0.63 | 0.60 | 0.73 | 0.66 | 0.81 | 0.96 | 0.88* |
PUAD | 0.88 | 0.77 | 0.82* | 0.91 | 0.96 | 0.93* | 0.78 | 0.95 | 0.86 |
iForest | 0.54 | 1 | 0.70 | 0.46 | 1 | 0.63 | 0.30 | 0.89 | 0.45 |
OCSVM | 0.40 | 0.99 | 0.57 | 0.31 | 0.98 | 0.47 | 0.28 | 1 | 0.44 |
DeepAnT | 0.79 | 0.77 | 0.78 | 0.90 | 0.97 | 0.93* | 0.69 | 0.90 | 0.78 |
FuseAD | 0.72 | 0.69 | 0.71 | 0.81 | 0.84 | 0.83 | 0.69 | 0.94 | 0.79 |
Bagel | 0.74 | 0.82 | 0.78 | 0.62 | 0.82 | 0.71 | 0.83 | 0.87 | 0.85 |
Donut | 0.82 | 0.79 | 0.80 | 0.80 | 0.80 | 0.80 | 0.84 | 0.90 | 0.87 |
Table 4
Used parameters of key performance indicator anomaly detection methods evaluated"
Parameter | Value | Parameter | Value | ||
---|---|---|---|---|---|
EWMA | | 0.1, 0.3, 0.5, 0.7, 0.9 | |||
Wavelet | win | 3, 5, 7 (days) | freq | low, mid, high | |
Holt-winters | | 0.2, 0.4, 0.6, 0.8 0.2, 0.4, 0.6, 0.8 | | 0.2, 0.4, 0.6, 0.8 | |
Opprentice | P | 0.66 | R | 0.66 | |
| 0.8 | tree_count | 30 | ||
ADS | min_samples | 3 | max_radius | 0.05 | |
tree_count | 30 | ||||
iForest | n_estimators max_samples | 100 auto | contamination max_features | 0.1 1 | |
OCSVM | kernel | ‘rbf’ | nu | 0.04 | |
DeepAnT | window kernel_size | 50 5 | filters activation | 32 ‘relu’ | |
FuseAD | window kernel_size p q | 50 5 2 2 | filters activation d | 32 ‘relu’ 1 | |
Donut(Bagel) | window_size mcmc_iteration std_epsilon epoch initial_lr lr_anneal_factor (dropout_rate) | 120 10 0.0001 50 0.001 0.75 (0.1) | missing_injection_rate latent_dim coefficient batch_size lr_anneal_epochs grad_clip_norm | 0.01 8 0.001 256(128) 10 10.0 | |
PUAD | max_radius | 0.05 | |||
| 6 | | 9 | ||
| 0.0015 | | 8 | ||
| 0.200 | | 200 |
[1] | 裴丹, 张圣林, 裴昶华, 阿里巴巴公司. 基于机器学习的智能运维. 中国计算机学会通讯, 2017, 13(12): 68-72. |
[2] | Barford P, Kline J, Plonka D, et al. A signal analysis of network traffic anomalies[C]// Proceedings of the 2nd ACM SIGCOMM Workshop on Internet measurement, 2002: 71-82. |
[3] | Yan H, Flavel A, Ge Z, et al. Argus: End-to-end service anomaly detection and localization from an isp’s point of view[C]// 2012 Proceedings IEEE INFOCOM, IEEE, 2012: 2756-2760. |
[4] | Zhang Yin, Ge Zihui, Greenberg A, et al. Network anom-ography[C]// Proceedings of the 5th ACM SIGCOMM conference on Internet Measurement, 2005: 30-30. |
[5] | Krishnamurthy B, Sen S, Zhang Yin, et al. Sketch-based change detection: methods, evaluation, and applications[C]// Proceedings of the 3rd ACM SIGCOMM conference on Internet measurement, 2003: 234-247. |
[6] | Choffnes D R, Bustamante F E, Ge Z. Crowdsourcing service-level network event monitoring[C]// Proceedings.of the ACM SIGCOMM 2010 Conference, 2010: 387-398. |
[7] | Siffer A, Fouque P A, Termier A, et al. Anomaly detection in streams with extreme value theory[C]// Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2017: 1067-1075. |
[8] | Li J, Di S, Shen Y, et al. FluxEV: a fast and effective unsupervised framework for time-series anomaly detec-tion[C]// Proceedings of the 14th ACM International Con-ference on Web Search and Data Mining, 2021: 824-832. |
[9] | Silverman B W. Density estimation for statistics and data analysis[M]. Routledge, 2018. |
[10] | Cleveland R B, Cleveland W S, McRae J E, et al. STL: A seasonal-trend decomposition[J]. J. Off. Stat, 1990, 6(1): 3-73. |
[11] | Wen Q, Gao J, Song X, et al. RobustSTL: A robust sea-sonal-trend decomposition algorithm for long time series[C]// Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(01): 5409-5416. |
[12] | Wen Q, Zhang Z, Li Y, et al. Fast RobustSTL: Efficient and robust seasonal-trend decomposition for time series with complex patterns[C]// Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Disco-very & Data Mining, 2020: 2203-2213. |
[13] | Wen Q, He K, Sun L, et al. RobustPeriod: Robust Time-Frequency Mining for Multiple Periodicity Detection[C]// Proceedings of the 2021 International Conference on Management of Data, 2021: 2328-2337. |
[14] |
Chen Yingying, Mahajan R, Sridharan B, et al. A prov-ider-side view of web search response time[J]. ACM SIGCOMM Computer Communication Review, 2013, 43(4): 243-254.
doi: 10.1145/2534169.2486035 |
[15] | Lee S B, Pei Dan, Hajiaghayi M T, et al. Threshold com-pression for 3g scalable monitoring[C]// 2012 Proceedings IEEE INFOCOM, IEEE, 2012: 1350-1358. |
[16] | Mahimkar A, Ge Zihui, Wang Jia, et al. Rapid detection of maintenance induced changes in service performance[C]// Proceedings of the Seventh conference on emerging Networking EXperiments and Technologies, 2011: 1-12. |
[17] | Liu Dapeng, Zhao Youjian, Xu Haowen, et al. Oppren-tice: Towards practical and automatic anomaly detection through machine learning[C]// Proceedings of the 2015 Internet Measurement Conference, 2015: 211-224. |
[18] |
Wang J, Jing Y, Qi Q, et al. ALSR: An adaptive label screening and relearning approach for interval-oriented anomaly detection[J]. Expert Systems with Applications, 2019, 136: 94-104.
doi: 10.1016/j.eswa.2019.06.028 |
[19] |
Zhang Y, Zhu Y, Li X, et al. Anomaly Detection Based on Mining Six Local Data Features and BP Neural Network[J]. Symmetry, 2019, 11(4): 571.
doi: 10.3390/sym11040571 |
[20] | Bu Jiahao, Liu Ying, Zhang Shenglin, et al. Rapid depl-oyment of anomaly detection models for large number of emerging kpi streams[C]// 2018 IEEE 37th International Performance Computing and Communications Confer-ence (IPCCC), IEEE, 2018: 1-8. |
[21] | ZHANG S, ZHAO C, SUI Y, et al. Robust KPI Anomaly Detection for Large-Scale Software Services with Partial Labels[C]// 2021 IEEE 32nd International Symposium on Software Reliability Engineering (ISSRE), Wuhan, China: IEEE, 2021: 103-114. |
[22] | Qian J, Liu F, Li D, et al. Large-scale kpi anomaly dete-ction based on ensemble learning and clustering[J]. Journal of Cybersecurity, 2020, 2(4): 157-166. |
[23] | Ding Zhiguo, Fei Minrui. An anomaly detection approach based on isolation forest algorithm for streaming data using sliding window[J]. IFAC Proceedings Volumes, 2013, 46(20): 12-17. |
[24] | Jiang Jianmin, Yasakethu L. Anomaly detection via one class svm for protection of scada systems[C]// 2013 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery, IEEE, 2013: 82-88. |
[25] | Amer M, Goldstein M, Abdennadher S. Enhancing one-class support vector machines for unsupervised anomaly detection[C]// Proceedings of the ACM SIGKDD workshop on outlier detection and description, 2013: 8-15. |
[26] |
Munir M, Siddiqui S A, Dengel A, et al. DeepAnT: A deep learning approach for unsupervised anomaly detection in time series[J]. IEEE Access, 2018, 7: 1991-2005.
doi: 10.1109/ACCESS.2018.2886457 |
[27] |
Munir M, Siddiqui S A, Chattha M A, et al. FuseAD: unsupervised anomaly detection in streaming sensors data by fusing statistical and deep learning models[J]. Sensors, 2019, 19(11): 2451.
doi: 10.3390/s19112451 |
[28] | Xu Haowen, Chen Wenxiao, Zhao Nengwen, et al. Unsupervised anomaly detection via variational auto-encoder for seasonal kpis in web applications[C]// Proce-edings of the 2018 World Wide Web Conference, 2018: 187-196. |
[29] | Li Zeyan, Chen Wenxiao, Pei Dan. Robust and unsuper-vised kpi anoALSmaly detection based on conditional variational autoencoder[C]// 2018 IEEE 37th International Performance Computing and Commun-ications Confer-ence (IPCCC), IEEE, 2018: 1-9. |
[30] |
YU G, CAI Z, WANG S, et al. Unsupervised Online Anomaly Detection With Parameter Adaptation for KPI Abrupt Changes[J]. IEEE Transactions on Network and Service Management, 2020, 17(3): 1294-1308.
doi: 10.1109/TNSM.2019.2962701 |
[31] | WANG Y, WANG Z, XIE Z, et al. Practical and White-Box Anomaly Detection through Unsupervised and Act-ive Learning[C]// 2020 29th International Conference on Computer Communications and Networks (ICCCN), Honolulu, HI, USA: IEEE, 2020: 1-9. |
[32] |
ZHAO Y, ZHANG X, SHANG Z, et al. A Novel Hybrid Method for KPI Anomaly Detection Based on VAE and SVDD[J]. Symmetry, 2021, 13(11): 2104.
doi: 10.3390/sym13112104 |
[33] | NIE L, ZHAO L, LI K. Robust Anomaly Detection Using Reconstructive Adversarial Network[J]. IEEE Transa-ctions on Network and Service Management, 2021, 18 (2): 1899-1912. |
[34] | YOKKAMPON U, CHUMKAMON S, MOWSHOWITZ A, et al. Improved Variational Autoencoder Anomaly Detection in Time Series Data[C]// 2020 IEEE Inter-national Conference on Systems, Man, and Cybernetics (SMC), Toronto, ON, Canada: IEEE, 2020: 82-87. |
[35] |
NIU Z, YU K, WU X. LSTM-Based VAE-GAN for Time-Series Anomaly Detection[J]. Sensors, 2020, 20 (13): 3738.
doi: 10.3390/s20133738 |
[36] | GEIGER A, LIU D, ALNEGHEIMISH S, et al. TadGAN: Time Series Anomaly Detection Using Generative Adver-sarial Networks[C]// 2020 IEEE International Conference on Big Data (Big Data), Atlanta, GA, USA: IEEE, 2020: 33-43. |
[37] | YE H, MA X, PAN Q, et al. An Adaptive Approach for Anomaly Detector Selection and Fine-Tuning in Time Series[J]. arXiv:1907.07843 [cs, stat], 2019. |
[38] | REN H, XU B, WANG Y, et al. Time-Series Anomaly Detection Service at Microsoft[C]// Proceedings of the 25th ACM SIGKDD International Conference on Know-ledge Discovery & Data Mining, Anchorage AK USA: ACM, 2019: 3009-3017. |
[39] | Qiu Juan, Qingfeng Du, Wei Wang, Kanglin Yin, and Liang Chen. Short-term performance metrics forecasting for virtual machine to support anomaly detection using hybrid ARIMA-WNN model[C]. In 2019 IEEE 43rd Ann-ual Computer Software and Applications Conference (CO-MPSAC), IEEE, 2019,vol. 2,pp.330-335. |
[40] | LAN Z, XU L, FANG W. FDNN: Feature-based Deep Neural Network Model for Anomaly Detection of KPIs[C]//2019 IEEE 10th International Conference on Software Engineering and Service Science (ICSESS), Beijing, China: IEEE, 2019: 286-289. |
[41] |
JIANG W, HONG Y, ZHOU B, et al. A GAN-Based Ano-maly Detection Approach for Imbalanced Industrial Time Series[J]. IEEE Access, 2019, 7: 143608-143619.
doi: 10.1109/ACCESS.2019.2944689 |
[42] | Duan X Y, Chen N J, Xie Y S. Intelligent Detection of Large-Scale KPI Streams Anomaly Based on Transfer Learning[C]// CCF Conference on Big Data. Springer, Singapore, 2019: 366-379. |
[43] | Chen W, Xu H, Li Z, et al. Unsupervised anomaly dete-ction for intricate kpis via adversarial training of vae[C]// IEEE INFOCOM 2019-IEEE Conference on Computer Communications, IEEE, 2019: 1891-1899. |
[44] | Shi J, He G, Liu X. Anomaly detection for key perfor-mance indicators through machine learning[C]// 2018 International Conference on Network Infrastructure and Digital Content (IC-NIDC), IEEE, 2018: 1-5. |
[45] | Al Mamun S M, Beyaz M. LSTM recurrent neural net-work (RNN) for anomaly detection in cellular mobile net-works[C]// International Conference on Machine Learning for Networking, Springer, Cham, 2018: 222-237. |
[46] | Chandola V, Banerjee A, Kumar V. Anomaly detection: A survey[J]. ACM computing surveys (CSUR), 2009, 41(3): 1-58. |
[47] |
Shon T, Moon J. A hybrid machine learning approach to network anomaly detection[J]. Information Sciences, 2007, 177(18): 3799-3821.
doi: 10.1016/j.ins.2007.03.025 |
[48] | Zhang J, Wang Z, Yuan J, et al. Positive and unlabeled learning for anomaly detection with multi-features[C]// Proceedings of the 25th ACM international conference on Multimedia, 2017: 854-862. |
[49] | Li Zhihan, Zhao Youjian, Liu Rong, et al. Robust and rapid clustering of kpis for large-scale anomaly detection[C]// 2018 IEEE/ACM 26th International Symposium on Quality of Service (IWQoS), IEEE, 2018: 1-10. |
[50] | Qiu J, Du Q, Qian C. Kpi-tsad: A time-series anomaly detector for kpi monitoring in cloud applications[J]. Sy-mmetry, 2019, 11(11): 1350. |
[51] | Paparrizos J, Gravano L. k-shape: Efficient and accu-rate clustering of time series[C]// Proceedings of the 2015 ACM SIGMOD International Conference on Managem-ent of Data, 2015: 1855-1870. |
[52] | Zhang Shenglin, Lin Xiaofei, Sun Yongqian, et al. Rese-arch on Unsupervised KPI Anomaly Detection Based on Deep Learning[J]. Frontiers of Data&Computing, 2020, 2(3): 87-100. |
[1] | ZHAO Zhongbin,CAI Manchun,LU Tianliang. Network Malicious Traffic Detection Incorporating Multi-Head Attention Mechanism [J]. Frontiers of Data and Computing, 2022, 4(5): 60-67. |
[2] | WEI Ting,ZHANG Honghai,LIN Xiaoli,ZHANG Leilei,WANG Yan,JIA Jinfeng. Predictive Model of the Revisit Behavior of Cloud Service Site Users [J]. Frontiers of Data and Computing, 2022, 4(3): 124-130. |
[3] | ZHANG Yining,HE Hongbo,WANG Runqiang. A Survey on Popular Digital Audio Prediction Techniques [J]. Frontiers of Data and Computing, 2021, 3(4): 81-92. |
[4] | PU Jiansu,ZHU Zhengguo,SHAO Hui,GAO Boyang,ZHU Yanlin,YAN Zongkai,XIANG Yong. Screening and Predication of Solid Electrolyte Based on Visualization [J]. Frontiers of Data and Computing, 2021, 3(4): 18-29. |
[5] | ZHANG Shuying,HAN Xinyin,HE Xiaoyu,YUAN Danyang,LUAN Haijing,LI Ruilin,HE Jiayin,NIU Beifang. Review of Genomic Microsatellite Status Detection Based on Machine Learning [J]. Frontiers of Data and Computing, 2021, 3(3): 126-135. |
[6] | XIAO Jianping,LONG Chun,ZHAO Jing,WEI Jinxia,HU Anlei,DU Guanyao. A Survey on Network Intrusion Detection Based on Deep Learning [J]. Frontiers of Data and Computing, 2021, 3(3): 59-74. |
[7] | GUO Jialong,WANG Zongguo,WANG Yangang,ZHAO Xushan,SU Yanjing,LIU Zhiwei. A Review of Material Research and Development Methods Based on Computer Technology [J]. Frontiers of Data and Computing, 2021, 3(2): 120-132. |
[8] | Ren Huiying,Wang Jing,Wang Yangang. Turbulence Modeling Based on AutoML [J]. Frontiers of Data and Computing, 2020, 2(4): 121-131. |
[9] | Zhang Shenglin,Lin Xiaofei,Sun Yongqian,Zhang Yuzhi,Pei Dan. Research on Unsupervised KPI Anomaly Detection Based on Deep Learning [J]. Frontiers of Data and Computing, 2020, 2(3): 87-100. |
[10] | Li Zixin,Zhang Neng,Xiong Bin,Hu Yunfeng,Zhao Xinpeng,Huang Haiyou. Materials Science Database in Material Research and Development: Recent Applications and Prospects [J]. Frontiers of Data and Computing, 2020, 2(2): 78-90. |
[11] | Qian Xu,Tian Ziqi. The Application of Materials Genome Approach in Materials Design [J]. Frontiers of Data and Computing, 2020, 2(1): 128-141. |
[12] | Chu Zhongming, Xiao Dengjie, Qiao Yusi, Wan Jinyu. Machine Learning Applications for Particle Accelerators [J]. Frontiers of Data and Computing, 2019, 1(2): 110-120. |
[13] | Zhipeng Zhang,Jiawei Jiang,Lele Yu,Bin Cui. Angel +: A Large-Scale Machine Learning Platform on Angel [J]. Frontiers of Data and Computing, 2019, 1(1): 63-72. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||