[1] |
艾媒大文娱产业研究中心. 2020上半年中国在线音频市场研究报告[R]. 广州:广州艾媒数聚信息咨询股份有限公司, 2020.
|
[2] |
Paul Lee, Jeff Loucks, Duncan Stewart, et al. “听”时代来临有声读物与播客迎来新风口[R]. 美国:德勤洞察, 2019.
|
[3] |
李明扬. 广播电视工程中数字音频技术的优势与应用发展[J]. 中国科技投资, 2014,000(004):488-488.
|
[4] |
Singhi A, Brown D G. Hit song detection using lyric features alone[C]//ISMIR. 2014: 1-2.
|
[5] |
Georgieva E, Suta M, Burton N. Hitpredict: Predicting Hit Songs Using Spotify Data Stanford Computer Science 229: Machine Learning[C]//Center for Computer Rese-arch in Music and Acoustics, Stanford University, USA, Department of Civil and Environmental Engineer-ing. 2018: 1-5.
|
[6] |
Zangerle E, Vötter M, Huber R, et al. Hit Song Prediction: Leveraging Low-and High-Level Audio Features[C]//ISMIR. 2019: 319-326.
|
[7] |
Ni Y, Santos-Rodriguez R, Mcvicar M, et al. Hit song science once again a science[C]//4th International Work-shop on Machine Learning and Music. 2011: 1-2.
|
[8] |
Fan J, Casey M. Study of Chinese and UK hit songs prediction[C]//Proceedings of International Symposium on Computer Music Multidisciplinary Research. 2013: 640-652.
|
[9] |
Herremans D, Martens D, Sörensen K. Dance hit song prediction[J]. Journal of New Music Research, 2014,43(3):291-302.
doi: 10.1080/09298215.2014.881888
|
[10] |
Wang K. Predicting Hit Songs with MIDI Musical Features Stanford Computer Science 229: Machine Learning[C]//Center for Computer Research in Music and Acoustics, Stanford University, USA. 2014: 1-5.
|
[11] |
Herremans D, Bergmans T. Hit song prediction based on early adopter data and audio features[J]. arXiv preprint arXiv:2010.09489, 2020.
|
[12] |
Dhanaraj R, Logan B. Automatic Prediction of Hit Songs[C]//ISMIR. 2005: 488-491.
|
[13] |
Lee J, Lee J S. Music Popularity: Metrics, Character-istics, Audio-Based Prediction[J]. IEEE Transactions on Multimedia, 2018,PP(11):1-1.
|
[14] |
Borg N, Hokkanen G. What makes for a hit pop song? What makes for a pop song Stanford Computer Science 229: Machine Learning[C]// Stanford University, USA. 2011:1-5.
|
[15] |
Yang L C, Chou S Y, Liu J Y, et al. Revisiting the problem of audio-based hit song prediction using convolutional neural networks[C]//2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2017: 621-625.
|
[16] |
Yu L C, Yang Y H, Hung Y N, et al. Hit song prediction for pop music by siamese CNN with ranking loss[J]. arXiv preprint arXiv:1710.10814, 2017.
|
[17] |
Pham J, Kyauk E, Park E. Predicting song popularity Stanford Computer Science 229: Machine Learning[C]// Stanford University, USA. 2015: 26.
|
[18] |
Spotify A B. Spotify Web API[Z]. USA: Spotify USA Inc, 2018.
|
[19] |
Tsagkias M, Larson M, De Rijke M. Exploiting surface features for the prediction of podcast preference[C]//European Conference on Information Retrieval. Springer, Berlin, Heidelberg, 2009: 473-484.
|
[20] |
Yang L, Wang Y, Dunne D, et al. More than just words: Modeling non-textual characteristics of podcasts[C]//Proceedings of the Twelfth ACM International Confer-ence on Web Search and Data Mining. 2019: 276-284.
|
[21] |
Joshi B, Mittal S, Chetan A. Did You “Read” the Next Episode? Using Textual Cues for Predicting Podcast Popularity[C]//Proceedings of the 1st Workshop on NLP for Music and Audio (NLP4MusA). 2020: 13-17.
|
[22] |
Interiano M, Kazemi K, Wang L, et al. Musical trends and predictability of success in contemporary songs in and out of the top charts[J]. Royal Society open science, 2018,5(5):1-16.
|
[23] |
Bischoff K, Firan C S, Georgescu M, et al. Social know-ledge-driven music hit prediction[C]//International Con-ference on Advanced Data Mining and Applications. Spr-inger, Berlin, Heidelberg, 2009: 43-54.
|
[24] |
Lee J, Lee J S. Music popularity: Metrics, characteristics, and audio-based prediction[J]. IEEE Transactions on Multimedia, 2018,20(11):3173-3182.
doi: 10.1109/TMM.2018.2820903
|
[25] |
Monterola C, Abundo C, Tugaff J, et al. Prediction of potential hit song and musical genre using artificial neural networks[J]. International Journal of Modern Physics C, 2009,20(11):1697-1718.
doi: 10.1142/S0129183109014680
|
[26] |
Porter A, Bogdanov D, Kaye R, et al. Acousticbrainz: a community platform for gathering music information obtained from audio[C]// Proceedings of the 16th ISMIR Conference. 2015: 787.
|
[27] |
Tsagkias M, Larson M, Weerkamp W, et al. PodCred: A framework for analyzing podcast preference[C]//Proce-edings of the 2nd ACM workshop on Information credibility on the web. 2008: 67-74.
|
[28] |
Hirjee H, Brown D G. Rhyme analyzer: An analysis tool for rap lyrics[C]//Proceedings of the 11th International Society for Music Information Retrieval Conference. 2010: 1.
|
[29] |
Elovitz H S, Johnson R W, McHugh A, et al. Automatic translation of English text to phonetics by means of letter-to-sound rules[R]. NAVAL RESEARCH LAB WASH-INGTON DC, 1976.
|
[30] |
Liu J Y, Yang Y H. Event localization in music auto-tagging[C]//Proceedings of the 24th ACM international conference on Multimedia. 2016: 1048-1057.
|
[31] |
Chon S H, Slaney M, Berger J. Predicting success from music sales data: a statistical and adaptive approach[C]//Proceedings of the 1st ACM workshop on Audio and music computing multimedia. 2006: 83-88.
|
[32] |
储中明, 肖邓杰, 乔予思, 万金宇. 机器学习在粒子加速器的应用[J]. 数据与计算发展前沿, 2019,1(2):110-120.
|
[33] |
Kleinbaum D G, Dietz K, Gail M, et al. Logistic regression[M]. New York: Springer-Verlag, 2002: 1-39.
|
[34] |
王彦棡, 王珏, 曹荣强. 人工智能计算与数据服务平台的研究与应用[J]. 数据与计算发展前沿, 2019,1(2):86-97.
|
[35] |
Salganik M J, Dodds P S, Watts D J. Experimental study of inequality and unpredictability in an artificial cultural market[J]. science, 2006,311(5762):854-856.
pmid: 16469928
|
[36] |
Pachet F, Roy P. Hit Song Science Is Not Yet a Science[C]//ISMIR. 2008: 355-360.
|
[37] |
Reiman, Minna, Philippa Örnell. Predicting Hit Songs with Machine Learning[D]. Swenden: Royal Insti-tute of Technology, 2018: 1-37.
|
[38] |
廖方宇, 洪学海, 汪洋, 褚大伟. 数据与计算平台是驱动当代科学研究发展的重要基础设施[J]. 数据与计算发展前沿, 2019,1(1):2-10.
|