Frontiers of Data and Computing ›› 2021, Vol. 3 ›› Issue (3): 126-135.
doi: 10.11871/jfdc.issn.2096-742X.2021.03.011
• Technology and Applicaton • Previous Articles Next Articles
ZHANG Shuying1,2(),HAN Xinyin1,2(),HE Xiaoyu1,2(),YUAN Danyang1,2(),LUAN Haijing1,2(),LI Ruilin1(),HE Jiayin1(),NIU Beifang1,2,*()
Received:
2021-01-21
Online:
2021-06-20
Published:
2021-07-09
Contact:
NIU Beifang
E-mail:zhangshuying@cnic.cn;hanxinyin@cnic.cn;hexy@sccas.cn;yuandanyang@cnic.cn;luanhaijing@cnic.cn;lirl@sccas.cn;jiayin.he@cnic.cn;niubf@cnic.cn
ZHANG Shuying,HAN Xinyin,HE Xiaoyu,YUAN Danyang,LUAN Haijing,LI Ruilin,HE Jiayin,NIU Beifang. Review of Genomic Microsatellite Status Detection Based on Machine Learning[J]. Frontiers of Data and Computing, 2021, 3(3): 126-135.
Table 2
Features of MSIseq and MSIpred"
序号 | 特征 | 含义 |
---|---|---|
1 | T.sns(SNP) | 样本中SNS比率 |
2 | S.sns(SNP_R) | MS序列中SNS比率 |
3 | T.ind(INDEL) | 样本中indel比率 |
4 | S.ind(INDEL_R) | MS序列中indel比率 |
5 | T(t_mutation) | 样本中突变比率 |
6 | S(t_mutation_R) | MS序列中突变比率 |
7 | S.sns/T.sns(SNP_R/SNP) | - |
8 | S.ind/T.ind(INDEL_R/ INDEL) | - |
9 | S/T(t_mutation_R/t_ mutation) | - |
10 | Frame_Shift_Del | 导致ORF偏移的删除比率 |
11 | Frame_Shift_Ins | 导致ORF偏移的插入比率 |
12 | In_Frame_Del | ORF没有偏移的删除比率 |
13 | In_Frame_Ins | ORF没有偏移的插入比率 |
14 | Missense_Mutation | 错义突变比率 |
15 | Nonsense_Mutation | 无义突变比率 |
16 | Silent | 沉默突变比率 |
17 | Splice_Site | 剪接位点的突变比率 |
18 | 3’UTR | 3’UTR区域突变比率 |
19 | 3’Flank | 3’Flank区域突变比率 |
20 | 5’UTR | 5’UTR区域突变比率 |
21 | 5’Flank | 5’Flank区域突变比率 |
22 | Intron | 内含子区域突变比率 |
[1] |
Loeb K R, Loeb L A. Significance of multiple mutations in cancer[J]. Carcinogenesis, 2000, 21(3):379-385.
pmid: 10688858 |
[2] |
Aaltonen L A, Peltomaki P, Leach F S, et al. Clues to the pathogenesis of familial colorectal cancer[J]. Science, 1993, 260(5109):812-816.
doi: 10.1126/science.8484121 |
[3] |
Imai K, Yamamoto H. Carcinogenesis and microsatellite instability: the interrelationship between genetics and epigenetics[J]. Carcinogenesis, 2008, 29(4):673-680.
doi: 10.1093/carcin/bgm228 |
[4] | Yamamoto H, Adachi Y, Taniguchi H, et al. Interrelation-ship between microsatellite instability and microRNA in gastrointestinal cancer[J]. World journal of gastroen-terology: WJG, 2012, 18(22):2745-2755. |
[5] |
Yamamoto H, Watanabe Y, Maehata T, et al. An updated review of gastric cancer in the next-generation sequencing era: insights from bench to bedside and vice versa[J]. World journal of gastroenterology: WJG, 2014, 20(14):3927-3937.
doi: 10.3748/wjg.v20.i14.3927 |
[6] |
Gelsomino F, Barbolini M, Spallanzani A, et al. The evolving role of microsatellite instability in colorectal cancer: a review[J]. Cancer treatment reviews, 2016, 51:19-26.
doi: 10.1016/j.ctrv.2016.10.005 |
[7] | 陈玮, 赵丹, 李晓东, 等. 肿瘤微卫星不稳定检测方法综述[J]. 计算机系统应用, 2018, 27(10):39-45. |
[8] |
Libbrecht M W, Noble W S. Machine learning applica-tions in genetics and genomics[J]. Nature Reviews Genetics, 2015, 16(6):321-332.
doi: 10.1038/nrg3920 |
[9] | 俞益洲, 马杰超, 石德君, 等. 深度学习在医学影像分析中的应用综述[J]. 数据与计算发展前沿, 2019, 1(2):37-52. |
[10] | 曾瀞瑶, 苑娜, 魏文娟, 等. 高通量计算在大规模人群队列基因组数据解析应用中的挑战[J]. 数据与计算发展前沿, 2020, 2(1):117-127. |
[11] |
Kelkar Y D, Strubczewski N, Hile S E, et al. What is a microsatellite: a computational and experimental definition based upon repeat mutational behavior at A/T and GT/AC repeats[J]. Genome biology and evolution, 2010, 2:620-635.
doi: 10.1093/gbe/evq046 |
[12] |
Vilar E, Gruber S B. Microsatellite instability in colorectal cancer—the stable evidence[J]. Nature reviews Clinical oncology, 2010, 7(3):153-162.
doi: 10.1038/nrclinonc.2009.237 |
[13] | Baretti M, Le D T. DNA mismatch repair in cancer[J]. Pharmacology & therapeutics, 2018, 189:45-62. |
[14] |
Ribic C M, Sargent D J, Moore M J, et al. Tumor micro-satellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer[J]. New England Journal of Medicine, 2003, 349(3):247-257.
doi: 10.1056/NEJMoa022289 |
[15] | Laiho P, Launonen V, Lahermo P, et al. Low-level microsatellite instability in most colorectal carcinomas[J]. Cancer research, 2002, 62(4):1166-1170. |
[16] |
Papadopoulos N, Lindblom A. Molecular basis of HNPCC: mutations of MMR genes[J]. Human mutation, 1997, 10(2):89-99.
doi: 10.1002/(ISSN)1098-1004 |
[17] |
Vasen H F, Watson P, Mecklin J P, et al. New clinical criteria for hereditary nonpolyposis colorectal cancer (HNPCC, Lynch syndrome) proposed by the International Collaborative group on HNPCC[J]. Gastroenterology, 1999, 116(6):1453-1456.
pmid: 10348829 |
[18] |
Scapoli C, Leon M P D, Sassatelli R, et al. Genetic epidemiology of hereditary non-polyposis colorectal cancer syndromes in Modena, Italy: results of a complex segregation analysis[J]. Annals of human genetics, 1994, 58(3):275-295.
doi: 10.1111/ahg.1994.58.issue-3 |
[19] |
Lynch H T, De la Chapelle A. Hereditary colorectal cancer[J]. New England Journal of Medicine, 2003, 348(10):919-932.
doi: 10.1056/NEJMra012242 |
[20] |
Hampel H, Frankel W L, Martin E, et al. Feasibility of screening for Lynch syndrome among patients with colorectal cancer[J]. Journal of Clinical Oncology, 2008, 26(35):5783-5788.
doi: 10.1200/JCO.2008.17.5950 |
[21] | Latham A, Srinivasan P, Kemel Y, et al. Microsatellite instability is associated with the presence of Lynch syndrome pan-cancer[J]. Journal of Clinical Oncology, 2019, 37(4):286-295. |
[22] |
de la Chapelle A, Hampel H. Clinical relevance of micro-satellite instability in colorectal cancer[J]. Journal of Clinical Oncology, 2010, 28(20):3380-3387.
doi: 10.1200/JCO.2009.27.0652 pmid: 20516444 |
[23] |
Valle L, Perea J, Carbonell P, et al. Clinicopathologic and pedigree differences in Amsterdam I-positive hereditary nonpolyposis colorectal cancer families according to tumor microsatellite instability status[J]. Journal of clinical oncology, 2007, 25(7):781-786.
doi: 10.1200/JCO.2006.06.9781 |
[24] |
Sargent D J, Marsoni S, Monges G, et al. Defective mismatch repair as a predictive marker for lack of efficacy of fluorouracil-based adjuvant therapy in colon cancer[J]. Journal of Clinical Oncology, 2010, 28(20):3219-3226.
doi: 10.1200/JCO.2009.27.1825 pmid: 20498393 |
[25] | 袁瑛. 结直肠癌及其他相关实体瘤微卫星不稳定性检测中国专家共识[J]. 实用肿瘤杂志, 2019, 34(5):381-389. |
[26] |
McGranahan N, Furness A J, Rosenthal R, et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade[J]. Science, 2016, 351(6280):1463-1469.
doi: 10.1126/science.aaf1490 |
[27] |
Smyrk T C, Watson P, Kaul K, et al. Tumor-infiltrating lymphocytes are a marker for microsatellite instability in colorectal carcinoma[J]. Cancer, 2001, 91(12):2417-2422.
doi: 10.1002/(ISSN)1097-0142 |
[28] |
Le D T, Uram J N, Wang H, et al. PD-1 blockade in tumors with mismatch-repair deficiency[J]. New England Journal of Medicine, 2015, 372(26):2509-2520.
doi: 10.1056/NEJMoa1500596 |
[29] |
Kim J H, Park H E, Cho N-Y, et al. Characterisation of PD-L1-positive subsets of microsatellite-unstable colorectal cancers[J]. British journal of cancer, 2016, 115(4):490-496.
doi: 10.1038/bjc.2016.211 |
[30] |
Dudley J C, Lin M-T, Le D T, et al. Microsatellite instability as a biomarker for PD-1 blockade[J]. Clinical Cancer Research, 2016, 22(4):813-820.
doi: 10.1158/1078-0432.CCR-15-1678 |
[31] |
Berg K D, Glaser C L, Thompson R E, et al. Detection of microsatellite instability by fluorescence multiplex polymerase chain reaction[J]. The Journal of Molecular Diagnostics, 2000, 2(1):20-28.
doi: 10.1016/S1525-1578(10)60611-3 |
[32] |
Shia J, Tang L H, Vakiani E, et al. Immunohistochemistry as first-line screening for detecting colorectal cancer patients at risk for hereditary nonpolyposis colorectal cancer syndrome: a 2-antibody panel may be as predictive as a 4-antibody panel[J]. The American journal of surgical pathology, 2009, 33(11):1639-1645.
doi: 10.1097/PAS.0b013e3181b15aa2 |
[33] |
Niu B, Ye K, Zhang Q, et al. MSIsensor: microsatellite instability detection using paired tumor-normal sequence data[J]. Bioinformatics, 2014, 30(7):1015-1016.
doi: 10.1093/bioinformatics/btt755 |
[34] |
Salipante S J, Scroggins S M, Hampel H L, et al. Micro-satellite instability detection by next generation sequen-cing[J]. Clinical chemistry, 2014, 60(9):1192-1199.
doi: 10.1373/clinchem.2014.223677 |
[35] |
Kautto E A, Bonneville R, Miya J, et al. Performance ev-aluation for rapid detection of pan-cancer microsatellite instability with MANTIS[J]. Oncotarget, 2017, 8(5):7452-7463.
doi: 10.18632/oncotarget.13918 pmid: 27980218 |
[36] | Middha S, Zhang L, Nafa K, et al. Reliable pan-cancer microsatellite instability assessment by using targeted next-generation sequencing data[J]. JCO precision onco-logy, 2017, 1:1-17. |
[37] | 陈梅丽, 马英克, 李茹姣, 等. 基因组学数据分析方法现状和展望[J]. 数据与计算发展前沿, 2020, 2(2):1-19. |
[38] |
Huang M N, McPherson J R, Cutcutache I, et al. MSIseq: software for assessing microsatellite instability from catalogs of somatic mutations[J]. Scientific reports, 2015, 5:13321.
doi: 10.1038/srep13321 |
[39] |
Wang C, Liang C. MSIpred: a python package for tumor microsatellite instability classification from tumor mutation annotation data using a support vector machine[J]. Scientific reports, 2018, 8(1):17546.
doi: 10.1038/s41598-018-35682-z |
[40] |
Hause R J, Pritchard C C, Shendure J, et al. Classification and characterization of microsatellite instability across 18 cancer types[J]. Nature medicine, 2016, 22(11):1342-1350.
doi: 10.1038/nm.4191 |
[41] |
Foltz S M, Liang W-W, Xie M, et al. MIRMMR: binary classification of microsatellite instability using methyla-tion and mutations[J]. Bioinformatics, 2017, 33(23):3799-3801.
doi: 10.1093/bioinformatics/btx507 |
[42] | Escudié F, Van Goethem C, Grand D, et al. MIAmS: microsatellite instability detection on NGS amplicons data[J]. Bioinformatics, 2019, 36(6):1915-1916. |
[43] |
Delgado P O, Alves B C A, de Sousa Gehrke F, et al. Characterization of cell-free circulating DNA in plasma in patients with prostate cancer[J]. Tumor Biology, 2013, 34(2):983-986.
doi: 10.1007/s13277-012-0634-6 |
[1] | ZHAO Zhongbin,CAI Manchun,LU Tianliang. Network Malicious Traffic Detection Incorporating Multi-Head Attention Mechanism [J]. Frontiers of Data and Computing, 2022, 4(5): 60-67. |
[2] | WEI Ting,ZHANG Honghai,LIN Xiaoli,ZHANG Leilei,WANG Yan,JIA Jinfeng. Predictive Model of the Revisit Behavior of Cloud Service Site Users [J]. Frontiers of Data and Computing, 2022, 4(3): 124-130. |
[3] | SUN Yongqian,ZHANG Ruru,LIN Zihan,ZHANG Shenglin,TAN Zhiyuan,ZHANG Yuzhi. Evaluation of KPI Anomaly Detection Methods [J]. Frontiers of Data and Computing, 2022, 4(3): 46-65. |
[4] | ZHANG Yining,HE Hongbo,WANG Runqiang. A Survey on Popular Digital Audio Prediction Techniques [J]. Frontiers of Data and Computing, 2021, 3(4): 81-92. |
[5] | PU Jiansu,ZHU Zhengguo,SHAO Hui,GAO Boyang,ZHU Yanlin,YAN Zongkai,XIANG Yong. Screening and Predication of Solid Electrolyte Based on Visualization [J]. Frontiers of Data and Computing, 2021, 3(4): 18-29. |
[6] | XIAO Jianping,LONG Chun,ZHAO Jing,WEI Jinxia,HU Anlei,DU Guanyao. A Survey on Network Intrusion Detection Based on Deep Learning [J]. Frontiers of Data and Computing, 2021, 3(3): 59-74. |
[7] | GUO Jialong,WANG Zongguo,WANG Yangang,ZHAO Xushan,SU Yanjing,LIU Zhiwei. A Review of Material Research and Development Methods Based on Computer Technology [J]. Frontiers of Data and Computing, 2021, 3(2): 120-132. |
[8] | Ren Huiying,Wang Jing,Wang Yangang. Turbulence Modeling Based on AutoML [J]. Frontiers of Data and Computing, 2020, 2(4): 121-131. |
[9] | Chen Meili,Ma Yingke,Li Rujiao,Bao Yiming. Current Status and Prospects of Genomics Data Analysis Methods [J]. Frontiers of Data and Computing, 2020, 2(2): 1-19. |
[10] | Li Zixin,Zhang Neng,Xiong Bin,Hu Yunfeng,Zhao Xinpeng,Huang Haiyou. Materials Science Database in Material Research and Development: Recent Applications and Prospects [J]. Frontiers of Data and Computing, 2020, 2(2): 78-90. |
[11] | Qian Xu,Tian Ziqi. The Application of Materials Genome Approach in Materials Design [J]. Frontiers of Data and Computing, 2020, 2(1): 128-141. |
[12] | Chu Zhongming, Xiao Dengjie, Qiao Yusi, Wan Jinyu. Machine Learning Applications for Particle Accelerators [J]. Frontiers of Data and Computing, 2019, 1(2): 110-120. |
[13] | Zhipeng Zhang,Jiawei Jiang,Lele Yu,Bin Cui. Angel +: A Large-Scale Machine Learning Platform on Angel [J]. Frontiers of Data and Computing, 2019, 1(1): 63-72. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||