[1] |
D. Xue, P.V. Balachandran, J. Hogden, J. Theiler, D. Xue, T. Lookman . Accelerated search for materials with targeted properties by adaptive design[J]. Nature communications 7 (2016) 11241.
|
[2] |
S. Kiyohara, T. Mizoguchi . Effective search for stable segregation configurations at grain boundaries with data-mining techniques[J]. Physica B: Condensed Matter 532 (2018) 9-14.
|
[3] |
C. Wen, Y. Zhang, C. Wang, D. Xue, Y. Bai, S. Antonov, L. Dai, T. Lookman, Y. Su . Machine learning assisted design of high entropy alloys with desired property[J]. Acta Materialia 170 (2019) 109-117.
doi: 10.1016/j.actamat.2019.03.010
|
[4] |
P. Raccuglia, K.C. Elbert, P.D. Adler, C. Falk, M.B. Wenny, A. Mollo, M. Zeller, S.A. Friedler, J. Schrier A.J.. Norquist, . Machine-learning-assisted materials discovery using failed experiments[J]. Nature 533(7601) (2016) 73.
|
[5] |
V. Stanev, C. Oses, A.G. Kusne, E. Rodriguez, J. Paglione, S. Curtarolo, S. Takeuchi . Machine learning modeling of superconducting critical temperature[J]. npj Computational Materials 4(1) (2018) 1-14.
|
[6] |
M. Rahaman, W. Mu, J. Odqvist, P. Hedström . Machine Learning to Predict the Martensite Start Temperature in Steels[J]. Metallurgical and Materials Transactions A 50(5) (2019) 2081-2091.
|
[7] |
J. Schmidt, J. Shi, P. Borlido, L. Chen, S. Botti, M.A. Marques . Predicting the thermodynamic stability of solids combining density functional theory and machine learning[J]. Chemistry of Materials 29(12) (2017) 5090-5103.
|
[8] |
Z. Zhou, Y. Zhou, Q. He, Z. Ding, F. Li, Y. Yang . Machine learning guided appraisal and exploration of phase design for high entropy alloys[J]. npj Computational Materials 5(1) (2019) 1-9.
doi: 10.1038/s41524-018-0138-z
|
[9] |
A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder . Commentary: The Materials Project: A materials genome approach to accelerating materials innovation[J]. Apl Materials 1(1) (2013) 011002.
|
[10] |
S. Curtarolo, W. Setyawan, G.L. Hart, M. Jahnatek, R.V. Chepulskii, R.H. Taylor, S. Wang, J. Xue, K. Yang, O. Levy . AFLOW: an automatic framework for high-throughput materials discovery[J]. Computational Materials Science 58 (2012) 218-226.
|
[11] |
J.E. Saal, S. Kirklin, M. Aykol, B. Meredig, C. Wolverton . Materials design and discovery with high-throughput density functional theory: the open quantum materials database (OQMD)[J]. Jom 65(11) (2013) 1501-1509.
|
[12] |
S. Kirklin, J.E. Saal, B. Meredig, A. Thompson, J.W. Doak, M. Aykol, S. Rühl, C. Wolverton . The Open Quantum Materials Database (OQMD): assessing the accuracy of DFT formation energies[J]. npj Computational Materials 1 (2015) 15010.
|
[13] |
S. Curtarolo, W. Setyawan, S. Wang, J. Xue, K. Yang, R.H. Taylor, L.J. Nelson, G.L. Hart, S. Sanvito, M. Buongiorno-Nardelli . AFLOWLIB. ORG: A distributed materials properties repository from high-throughput ab initio calculations[J]. Computational Materials Science 58 (2012) 227-235.
|
[14] |
A.R. Supka, T.E. Lyons, L. Liyanage, P. D’Amico, R.A.R. Al Orabi, S. Mahatara, P. Gopal, C. Toher, D. Ceresoli, A. Calzolari . AFLOWπ: A minimalist approach to high-throughput ab initio calculations including the generation of tight-binding hamiltonians[J]. Computational Materials Science 136 (2017) 76-84.
|
[15] |
E. Gossett, C. Toher, C. Oses, O. Isayev, F. Legrain, F. Rose, E. Zurek, J. Carrete, N. Mingo, A. Tropsha . AFLOW-ML: A RESTful API for machine-learning predictions of materials properties[J]. Computational Materials Science 152 (2018) 134-145.
|
[16] |
B. Meredig, A. Agrawal, S. Kirklin, J.E. Saal, J. Doak, A. Thompson, K. Zhang, A. Choudhary, C. Wolverton . Combinatorial screening for new materials in unconstrained composition space with machine learning[J]. Physical Review B 89(9) (2014) 094104.
|
[17] |
A. Belsky, M. Hellenbrandt, V.L. Karen, V.L. Luksch . New developments in the Inorganic Crystal Structure Database (ICSD): accessibility in support of materials research and design[J]. Acta Crystallographica Section B: Structural Science 58(3) (2002) 364-369.
|
[18] |
M. Hellenbrandt . The inorganic crystal structure database (ICSD)—present and future[J]. Crystallography Reviews 10(1) (2004) 17-22.
|
[19] |
https://materials.springer.com/.
|
[20] |
https://materialscloud.org/discover/.
|
[21] |
http://crystallography.net/.
|
[22] |
http://www.chemspider.com/.
|
[23] |
尹海清, 刘国权, 姜雪, 张瑞杰, 曲选辉 . 中国材料数据库与公共服务平台建设[J]. 科技导报, 2015,33(10) : 50-59.
|
[24] |
A. Mansouri Tehrani, A.O. Oliynyk, M. Parry, Z. Rizvi, S. Couper, F. Lin, L. Miyagi, T.D. Sparks, J. Brgoch . Machine learning directed search for ultraincompressible, superhard materials[J]. Journal of the American Chemical Society 140(31) (2018) 9844-9853.
doi: 10.1021/jacs.8b02717
|
[25] |
A. Agrawal, P.D. Deshpande, A. Cecen, G.P. Basavarsu, A.N. Choudhary, S.R. Kalidindi . Exploration of data science techniques to predict fatigue strength of steel from composition and processing parameters[J]. Integrating Materials and Manufacturing Innovation 3(1) (2014) 8.
|
[26] |
F. Legrain, J.s. Carrete, A. van Roekeghem, S. Curtarolo, N. Mingo . How chemical composition alone can predict vibrational free energies and entropies of solids[J]. Chemistry of Materials 29(15) (2017) 6220-6227.
|
[27] |
G. Cheon, K.A.N. Duerloo, A.D. Sendek, C. Porter, Y. Chen, E.J. Reed . Data mining for new two-and one-dimensional weakly bonded solids and lattice-commensurate heterostructures[J]. Nano letters 17(3) (2017) 1915-1923.
|
[28] |
A. van Roekeghem, J. Carrete, C. Oses, S. Curtarolo, N. Mingo . High-throughput computation of thermal conductivity of high-temperature solid phases: the case of oxide and fluoride perovskites[J]. Physical Review X 6(4) (2016) 041061.
|
[29] |
X.P. Zhao, H.Y. Huang, C. Wen, Y.J. Su, P. Qian . Accelerating the development of multi-component Cu-Al-based shape memory alloys with high elastocaloric property by machine learning[J]. Computational Materials Science 176 (2020) 109521.
|
[30] |
X. Jiang, H.Q. Yin, C. Zhang, R.J. Zhang, K.Q. Zhang, Z.H. Deng, G.Q. Liu, X.H. Qu . An materials informatics approach to Ni-based single crystal superalloys lattice misfit prediction[J]. Computational Materials Science 143 (2018) 295-300.
|
[31] |
Z. Deng, H. Yin, X. Jiang, C. Zhang, K. Zhang, T. Zhang, B. Xu, Q. Zheng, X. Qu . Machine leaning aided study of sintered density in Cu-Al alloy[J]. Computational Materials Science 155 (2018) 48-54.
|
[32] |
王卓, 杨小渝, 郑宇飞, 雍岐龙, 苏航, 杨才福 . 材料基因组框架下的材料集成设计及信息平台初探[J]. 科学通报, 2013,58(35):3733-3742.
|
[33] |
高岩涛, 贾伟乐, 王龙, 汪林望 . 超软赝势密度泛函分子动力学计算中的若干优化算法[J]. 科研信息化技术与应用, 2015,6(4) : 47-53.
|
[34] |
杨小渝, 王娟, 任杰, 宋健龙, 王宗国, 曾雉, 张小丽, 黄孙超, 张平, 林海青 . 支撑材料基因工程的高通量材料集成计算平台[J]. 计算物理, 2017,34(6) : 697-704.
|
[35] |
Z. Wang, X. Yang, L. Wang, J. Wang, M. Zhang, X. Zhao, J. Ren, Z. Zeng . CE Screen: An energy-based structure screening automatic workflow[J]. Computational Materials Science 143 (2018) 55-62.
|