[1] |
李树深 . 数据与计算是科技创新的巨大驱动力[J]. 数据与计算发展前沿, 2019,1(1):1.DOI: 10.11871/jfdc.issn.2096-742X.2019.01.001.PID:21.86101.2/jfdc.2096-742X.2019.01.001.
|
[2] |
廖方宇, 洪学海, 汪洋, 褚大伟 . 数据与计算平台是驱动当代科学研究发展的重要基础设施[J]. 数据与计算发展前沿, 2019,1(1):2-10.DOI: 10.11871/jfdc.10-1649.2019.01.002.PID:21.86101.2/jfdc.10-1649.2019.01.002.
|
[3] |
王彦棡, 王珏, 曹荣强 . 人工智能计算与数据服务平台的研究与应用[J]. 数据与计算发展前沿, 2019,1(2):86-97.DOI: 10.11871/jfdc.issn.2096-742X.2019.02.008.PID:21.86101.2/jfdc.2096-742X.2019.02.008.
|
[4] |
POPE S B J T F . Turbulent Flows [M]. IOP Publishing, 2001.
|
[5] |
TRACEY B, DURAISAMY K , ALONSO J of Conference. Application of Supervised Learning to Quantify Uncertainties in Turbulence and Combustion Modeling [C]. AIAA Aerospace Sciences Meeting Including the New Horizons Forum & Aerospace Exposition. 2013: 259.
|
[6] |
TRACEY B D, DURAISAMY K , ALONSO J of Conference. A machine learning strategy to assist turbulence model development [C]. 53rd AIAA aerospace sciences meeting. 2015: 1287.
|
[7] |
MING M, LU J, TRYGGVASON G . Using statistical learning to close two-fluid multiphase flow equations for a simple bubbly system[J]. Physics of Fluids, 2015,27(9):092101.
doi: 10.1063/1.4930004
|
[8] |
ZHANG Z J , DURAISAMY K of Conference. Machine Learning Methods for Data-Driven Turbulence Modeling [C]. AIAA Computational Fluid Dynamics Conference. 2015: 2460.
|
[9] |
LING J, TEMPLETON J J P O F . Evaluation of machine learning algorithms for prediction of regions of high Reynolds averaged Navier Stokes uncertainty[J]. 2015,27(8):085103.
|
[10] |
LING J, KURZAWSKI A, TEMPLETON J J J O F M . Reynolds averaged turbulence modelling using deep neural networks with embedded invariance[J]. 2016,807:155-166.
|
[11] |
KUTZ J N . Deep learning in fluid dynamics[J]. Journal of Fluid Mechanics, 2017,814:1-4.
doi: 10.1017/jfm.2016.803
|
[12] |
CHANG C-W, DINH N T . Classification of machine learning frameworks for data-driven thermal fluid models[J]. International Journal of Thermal Sciences, 2019,135:559-579.
doi: 10.1016/j.ijthermalsci.2018.09.002
|
[13] |
CHANG C-W, DINH N T . Reynolds-averaged turbulence modeling using type I and type II machine learning frameworks with deep learning[J]. arXiv preprint arXiv:1804.01065, 2018.
|
[14] |
BERGSTRA J, KOMER B, ELIASMITH C , et al. Hyperopt: a python library for model selection and hyperparameter optimization[J]. 2015,8(1):014008.
|
[15] |
HUTTER F, HOOS H , LEYTON-BROWN K of Conference. An evaluation of sequential model-based optimization for expensive blackbox functions [C]. Proceedings of the 15th annual conference companion on Genetic and evolutionary computation. 2013: 1209-1216.
|
[16] |
JIN H, SONG Q , HU X of Conference. Auto-keras: An efficient neural architecture search system[C]. Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2019: 1946-1956.
|
[17] |
PHAM H, GUAN M Y, ZOPH B , et al. Efficient neural architecture search via parameter sharing [J]. arXiv preprint arXiv:1802.03268, 2018.
|
[18] |
MOCKUS I . On Bayesian methods of seeking an extremum[M], Optimization techniques IFIP technical conference. Springer, 2020.
|
[19] |
RASMUSSEN C E, WILLIAMS C K I . Gaussian Processes for Machine Learning[M]. Berlin, Springer, 2003: 63-71.
|
[20] |
KUTZ J N J J O F M . Deep learning in fluid dynamics[J]. 2017,814:1-4.
|
[21] |
张伟伟, 朱林阳, 刘溢浪, 寇家庆 . 机器学习在湍流模型构建中的应用进展[J]. 空气动力学学报, 2019,37(03):444-454 .
|
[22] |
VOS R, FAROKHI S . Introduction to Transonic Aerodynamics[M]. Springer, 2015.
|
[23] |
PITZ R W, DAILY J W . Combustion in a turbulent mixing layer formed at a rearward-facing step[J]. AIAA Journal, 1983,21(11):1565-1570.
doi: 10.2514/3.8290
|
[24] |
AHMED U, PROSSER R . A Posteriori Assessment of Algebraic Scalar Dissipation Models for RANS Simulation of Premixed Turbulent Combustion[J]. Flow Turbulence & Combustion, 2018,100(1):39-73.
|
[25] |
WELLER H G, TABOR G, JASAK H , et al. A Tensorial Approach to Computational Continuum Mechanics Using Object Orientated Techniques[J]. Computers in physics, 1998,12(6):620-631 .
doi: 10.1063/1.168744
|
[26] |
ABADI M, BARHAM P, CHEN J , et al. of Conference. Tensorflow: A system for large-scale machine learning [C]. 12th {USENIX} Symposium on Operating Systems Design and Implementation({OSDI} 16). 2016: 265-283.
|
[27] |
NAIR V , HINTON G E of Conference. Rectified Linear Units Improve Restricted Boltzmann Machines [C]. Proceedings of the 27th International Conference on International Conference on Machine Learning. 2010: 807-8140.
|
[28] |
IOFFE S, SZEGEDY C . Batch normalization: Accelerating deep network training by reducing internal covariate shift [J]. arXiv preprint arXiv:1502.03167, 2015 .
|
[29] |
KINGMA D, BA J . Adam: A Method for Stochastic Optimization [J]. arXiv preprint arXiv:1412.6980, 2014 .
|