[1] |
JAIN A., ONG S. P., HAUTIER G ., et al. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation[J]. Apl Materials, 2013,1(1):011002.
doi: 10.1063/1.4812323
|
[2] |
BLAISZIK B., CHARD K., PRUYNE J ., 等. The Materials Data Facility: Data Services to Advance Materials Science Research[J]. JOM:the Journal of the Minerals Metals & Materials Society, 2016,68(8):2045-2052.
|
[3] |
SWAMI A., JAIN R . Scikit-learn: Machine Learning in Python[J]. Journal of Machine Learning Research, 2012,12(10):2825-2830.
|
[4] |
BLOKHIN E., VILLARS P ., The PAULING FILE Project and Materials Platform for Data Science: From Big Data Toward Materials Genome[M]. Handbook of Materials Modeling. 2018.
|
[5] |
MCKINNEY W . Python for data analysis[M]. 东南大学出版社, 2013.
|
[6] |
O’Mara J, MEREDIG B, MICHEL K . Materials Data Infrastructure: A Case Study of the Citrination Platform to Examine Data Import, Storage, and Access[J]. JOM, 2016,68(8):2031-2034.
|
[7] |
LARSEN A H, MORTENSEN J J, BLOMQVIST J , et al. The atomic simulation environment—a Python library for working with atoms[J]. Journal of Physics: Condensed Matter, 2017,29(27):273002.
doi: 10.1088/1361-648X/aa680e
pmid: 28323250
|
[8] |
MONTAVON G., HANSEN K., FAZLI S ., et al. Learning Invariant Representations of Molecules for Atomization Energy Prediction [C]. International Conference on Neural Information Processing Systems. Curran Associates Inc. 2012.
|
[9] |
RUPP M . Many-Body Tensor Representation for Machine Learning of Materials [C]. Aps March Meeting. APS March Meeting Abstracts, 2017.
|
[10] |
WARD L., DUNN A., FAGHANINIA A ., 等. Matminer: An open source toolkit for materials data mining[J]. Computational Materials Science, 2018,152:60-69.
|
[11] |
SHEN C., BAO X., TAN J ., 等. Two noise-robust axial scanning multi-image phase retrieval algorithms based on Pauta criterion and smoothness constraint[J]. Optics Express, 2017,25(14):16235.
doi: 10.1364/OE.25.016235
pmid: 28789131
|
[12] |
WILHELM J, FREY E . Radial Distribution Function of Semiflexible Polymers[J]. Physical Review Letters, 1996,77(12):2581.
doi: 10.1103/PhysRevLett.77.2581
pmid: 10061990
|
[13] |
STEINHARDT P J, NELSON D R, Ronchetti M . Bond-Orientational Order in Liquids and Glasses[J]. Physical review. B, Condensed matter, 1983,28(2):784-805.
|
[14] |
RATOWSKY R P, FLECK J A . Treatment of angular derivatives in the Schrödinger equation by the finite Fourier series method[J]. Journal of Computational Physics, 1991,89(2):490-490.
|
[15] |
GOH G B, HODAS N O, VISHNU A . Deep learning for computational chemistry[J]. Journal of Computational Chemistry, 2017,38(16):1291-1307.
doi: 10.1002/jcc.24764
pmid: 28272810
|
[16] |
RUPP M, TKATCHENKO A MÜLLER, KLAUS-ROBERT , et al. Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning[J]. PHYSICAL REVIEW LETTERS, 2012,108(5):58301-0.
|
[17] |
LING J, HUTCHINSON M, ANTONO E , et al. High-Dimensional Materials and Process Optimization Using Data-Driven Experimental Design with Well-Calibrated Uncertainty Estimates[J]. Integrating Materials and Manufacturing Innovation, 2017,6:207-217.
|
[18] |
KOHAVI R . A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection [C]. International joint conference on Artificial intelligence. Morgan Kaufmann Publishers Inc. 1995.
|
[19] |
OLSTHOORN B, GEILHUFE R M, BORYSOV S S , et al. Band Gap Prediction for Large Organic Crystal Structures with Machine Learning[J]. Advanced Quantum Technologies, 2019,2:7-8.
|
[20] |
ONG S P, RICHARDS W D, JAIN A , et al. Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis[J]. Computational Materials Science, 2013,68:314-319.
doi: 10.1016/j.commatsci.2012.10.028
|
[21] |
KAY H. F., BAILEY P. C ., Structure and Properties of CaTiO3[J]. Acta Crystallographica, 1957,10(3):219-226.
doi: 10.1107/S0365110X57000675
|
[22] |
OUYANG R, CURTAROLO S, AHMETCIK E , et al. SISSO: A compressed-sensing method for identifying the best low-dimensional descriptor in an immensity of offered candidates[J]. Physical Review Materials, 2018,2(8):083802.
doi: 10.1103/PhysRevMaterials.2.083802
|
[23] |
MITRA P., MURTHY C.A., PAL S. K . Unsupervised feature selection using feature similarity[J]. Pattern Analysis & Machine Intelligence IEEE Transactions on, 2002,24(3):301-312.
|
[24] |
HARTIGAN J.A., WONG M.A . A K-means clustering algorithm[J]. Appl Stat, 2013,28(1):100-108.
doi: 10.2307/2346830
|
[25] |
Manuel Arellano and Stephen Bond. Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations[J]. Review of Economic Studies, 58(2):277-297.
doi: 10.2307/2297968
|
[26] |
KIRKLIN, SCOTT, SAAL, JAMES E, MEREDIG, BRYCE , 等. The Open Quantum Materials Database (OQMD): assessing the accuracy of DFT formation energies[J]. npj Computational Materials, 1:15010.
doi: 10.1038/npjcompumats.2015.10
|
[27] |
SILVER D., HUANG A., MADDISON C. J., GUEZ A., SIFRE L., VAN DEN DRIESSCHE, G., … & DIELEMAN S . Mastering the game of Go with deep neural networks and tree search[J]. Nature, 2016,529(7587):484-489.
doi: 10.1038/nature16961
pmid: 26819042
|
[28] |
YANG X, WANG Z , et al. MatCloud: A high-throughput computational infrastructure for integrated management of materials simulation, data and resources[J]. Computational Materials Science, 2018,146:319-333.
doi: 10.1016/j.commatsci.2018.01.039
|
[29] |
YANG X, WANG Z . et al. MatCloud, a high-throughput computational materials infrastructure: Present, future visions, and challenges[J]. 中国物理:英文版, 027(011):104-111.
|