| [1] | 
																						 
											 JAIN A., ONG S. P., HAUTIER G ., et al. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation[J]. Apl Materials, 2013,1(1):011002. 
																							 
																									doi: 10.1063/1.4812323
																																														 | 
										
																													
																							| [2] | 
																						 
											 BLAISZIK B., CHARD K., PRUYNE J ., 等. The Materials Data Facility: Data Services to Advance Materials Science Research[J]. JOM:the Journal of the Minerals Metals & Materials Society, 2016,68(8):2045-2052.
																						 | 
										
																													
																							| [3] | 
																						 
											 SWAMI A., JAIN R . Scikit-learn: Machine Learning in Python[J]. Journal of Machine Learning Research, 2012,12(10):2825-2830.
																						 | 
										
																													
																							| [4] | 
																						 
											 BLOKHIN E., VILLARS P ., The PAULING FILE Project and Materials Platform for Data Science: From Big Data Toward Materials Genome[M]. Handbook of Materials Modeling. 2018.
																						 | 
										
																													
																							| [5] | 
																						 
											 MCKINNEY W . Python for data analysis[M]. 东南大学出版社, 2013.
																						 | 
										
																													
																							| [6] | 
																						 
											 O’Mara J, MEREDIG B, MICHEL K . Materials Data Infrastructure: A Case Study of the Citrination Platform to Examine Data Import, Storage, and Access[J]. JOM, 2016,68(8):2031-2034.
																						 | 
										
																													
																							| [7] | 
																						 
											 LARSEN A H, MORTENSEN J J, BLOMQVIST J , et al. The atomic simulation environment—a Python library for working with atoms[J]. Journal of Physics: Condensed Matter, 2017,29(27):273002. 
																							 
																									doi: 10.1088/1361-648X/aa680e
																																					pmid: 28323250
																																		 | 
										
																													
																							| [8] | 
																						 
											 MONTAVON G., HANSEN K., FAZLI S ., et al. Learning Invariant Representations of Molecules for Atomization Energy Prediction [C]. International Conference on Neural Information Processing Systems. Curran Associates Inc. 2012.
																						 | 
										
																													
																							| [9] | 
																						 
											 RUPP M . Many-Body Tensor Representation for Machine Learning of Materials [C]. Aps March Meeting. APS March Meeting Abstracts, 2017.
																						 | 
										
																													
																							| [10] | 
																						 
											 WARD L., DUNN A., FAGHANINIA A ., 等. Matminer: An open source toolkit for materials data mining[J]. Computational Materials Science, 2018,152:60-69.
																						 | 
										
																													
																							| [11] | 
																						 
											 SHEN C., BAO X., TAN J ., 等. Two noise-robust axial scanning multi-image phase retrieval algorithms based on Pauta criterion and smoothness constraint[J]. Optics Express, 2017,25(14):16235. 
																							 
																									doi: 10.1364/OE.25.016235
																																					pmid: 28789131
																																		 | 
										
																													
																							| [12] | 
																						 
											 WILHELM J, FREY E  . Radial Distribution Function of Semiflexible Polymers[J]. Physical Review Letters, 1996,77(12):2581. 
																							 
																									doi: 10.1103/PhysRevLett.77.2581
																																					pmid: 10061990
																																		 | 
										
																													
																							| [13] | 
																						 
											 STEINHARDT P J, NELSON D R, Ronchetti M  . Bond-Orientational Order in Liquids and Glasses[J]. Physical review. B, Condensed matter, 1983,28(2):784-805.
																						 | 
										
																													
																							| [14] | 
																						 
											 RATOWSKY R P, FLECK J A  . Treatment of angular derivatives in the Schrödinger equation by the finite Fourier series method[J]. Journal of Computational Physics, 1991,89(2):490-490.
																						 | 
										
																													
																							| [15] | 
																						 
											 GOH G B, HODAS N O, VISHNU A  . Deep learning for computational chemistry[J]. Journal of Computational Chemistry, 2017,38(16):1291-1307. 
																							 
																									doi: 10.1002/jcc.24764
																																					pmid: 28272810
																																		 | 
										
																													
																							| [16] | 
																						 
											 RUPP M, TKATCHENKO A MÜLLER, KLAUS-ROBERT , et al. Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning[J]. PHYSICAL REVIEW LETTERS, 2012,108(5):58301-0.
																						 | 
										
																													
																							| [17] | 
																						 
											 LING J, HUTCHINSON M, ANTONO E , et al. High-Dimensional Materials and Process Optimization Using Data-Driven Experimental Design with Well-Calibrated Uncertainty Estimates[J]. Integrating Materials and Manufacturing Innovation, 2017,6:207-217.
																						 | 
										
																													
																							| [18] | 
																						 
											 KOHAVI R  . A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection [C]. International joint conference on Artificial intelligence. Morgan Kaufmann Publishers Inc. 1995.
																						 | 
										
																													
																							| [19] | 
																						 
											 OLSTHOORN B, GEILHUFE R M, BORYSOV S S , et al. Band Gap Prediction for Large Organic Crystal Structures with Machine Learning[J]. Advanced Quantum Technologies, 2019,2:7-8.
																						 | 
										
																													
																							| [20] | 
																						 
											 ONG S P, RICHARDS W D, JAIN A , et al. Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis[J]. Computational Materials Science, 2013,68:314-319. 
																							 
																									doi: 10.1016/j.commatsci.2012.10.028
																																														 | 
										
																													
																							| [21] | 
																						 
											 KAY H. F., BAILEY P. C ., Structure and Properties of CaTiO3[J]. Acta Crystallographica, 1957,10(3):219-226. 
																							 
																									doi: 10.1107/S0365110X57000675
																																														 | 
										
																													
																							| [22] | 
																						 
											 OUYANG R, CURTAROLO S, AHMETCIK E , et al. SISSO: A compressed-sensing method for identifying the best low-dimensional descriptor in an immensity of offered candidates[J]. Physical Review Materials, 2018,2(8):083802. 
																							 
																									doi: 10.1103/PhysRevMaterials.2.083802
																																														 | 
										
																													
																							| [23] | 
																						 
											 MITRA P., MURTHY C.A., PAL S. K . Unsupervised feature selection using feature similarity[J]. Pattern Analysis & Machine Intelligence IEEE Transactions on, 2002,24(3):301-312.
																						 | 
										
																													
																							| [24] | 
																						 
											 HARTIGAN J.A., WONG M.A . A K-means clustering algorithm[J]. Appl Stat, 2013,28(1):100-108. 
																							 
																									doi: 10.2307/2346830
																																														 | 
										
																													
																							| [25] | 
																						 
											Manuel Arellano and Stephen Bond. Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations[J]. Review of Economic Studies, 58(2):277-297. 
																							 
																									doi: 10.2307/2297968
																																														 | 
										
																													
																							| [26] | 
																						 
											 KIRKLIN, SCOTT, SAAL, JAMES E, MEREDIG, BRYCE , 等. The Open Quantum Materials Database (OQMD): assessing the accuracy of DFT formation energies[J]. npj Computational Materials, 1:15010. 
																							 
																									doi: 10.1038/npjcompumats.2015.10
																																														 | 
										
																													
																							| [27] | 
																						 
											 SILVER D., HUANG A., MADDISON C. J., GUEZ A., SIFRE L., VAN DEN DRIESSCHE, G., … & DIELEMAN S . Mastering the game of Go with deep neural networks and tree search[J]. Nature, 2016,529(7587):484-489. 
																							 
																									doi: 10.1038/nature16961
																																					pmid: 26819042
																																		 | 
										
																													
																							| [28] | 
																						 
											 YANG X, WANG Z , et al. MatCloud: A high-throughput computational infrastructure for integrated management of materials simulation, data and resources[J]. Computational Materials Science, 2018,146:319-333. 
																							 
																									doi: 10.1016/j.commatsci.2018.01.039
																																														 | 
										
																													
																							| [29] | 
																						 
											 YANG X, WANG Z . et al. MatCloud, a high-throughput computational materials infrastructure: Present, future visions, and challenges[J]. 中国物理:英文版, 027(011):104-111.
																						 |