Frontiers of Data and Computing ›› 2021, Vol. 3 ›› Issue (6): 17-34.
doi: 10.11871/jfdc.issn.2096-742X.2021.06.002
Previous Articles Next Articles
CHEN Qiong(),YANG Yong(),HUANG Tianlin(),FENG Yuan
Received:
2021-11-11
Online:
2021-12-20
Published:
2022-01-26
Contact:
CHEN Qiong
E-mail:csqchen@scut.edu.cn;csqchen@scut.edu.cn;202021044116@mail.scut.edu.cn;202121044681@mail.scut.edu.cn
CHEN Qiong,YANG Yong,HUANG Tianlin,FENG Yuan. A Survey on Few-Shot Image Semantic Segmentation[J]. Frontiers of Data and Computing, 2021, 3(6): 17-34.
Table 1
Segmentation performance of few-shot algorithms on PASCAL-5i"
模型 | 方法 | 骨干网络 | Mean-IoU (1-shot) | FB-IoU (1-shot) | Mean-IoU (5-shot) | FB-IoU (5-shot) |
---|---|---|---|---|---|---|
PANet[ SG-One[ FWB[ PPNet[ SimPropNet[ SAGNN[ MLC[ ASGNet[ | 原型 原型 原型 原型 原型 原型 原型 原型 | VGG-16 VGG-16 ResNet-101 ResNet-50 ResNet-50 ResNet-50 ResNet-50 ResNet-50 | 48.1 46.3 56.2 51.5 57.2 62.1 62.1 59.3 | 68.5 63.1 - - 73.0 73.2 69.2 | 55.7 47.1 59.9 62.0 60.0 62.8 66.1 63.9 | 70.7 65.9 - - 72.9 73.3 74.2 |
CANet[ PFENet[ BriNet[ PMMS[ PGNet[ CRNet[ SCL_PFENet[ SCL_CANet[ CMN[ CWT[ | 参数 参数 参数 参数 参数 参数 参数 参数 参数 参数 | ResNet-50 ResNet-50 ResNet-50 ResNet-50 ResNet-50 ResNet-50 ResNet-50 ResNet-50 ResNet-50 ResNet-50 | 55.4 60.8 57.1 55.2 56.0 55.7 61.8 57.5 62.8 56.4 | 66.2 73.3 69.9 66.8 71.9 70.3 72.3 | 57.1 61.9 56.8 58.5 58.8 62.9 59.2 63.7 63.7 | 69.6 73.9 70.5 71.5 72.8 70.7 72.8 |
Table 2
Segmentation performance of few-shot algorithms on COCO-20i"
模型 | 方法 | 骨干网络 | Mean-IoU (1-shot) | FB-IoU (1-shot) | Mean-IoU (5-shot) | FB-IoU (5-shot) |
---|---|---|---|---|---|---|
PANet[ FWB[ PPNet[ SAGNN[ MLC[ ASGNet[ | 原型 原型 原型 原型 原型 原型 | VGG-16 ResNet-101 ResNet-50 ResNet-101 ResNet-50 ResNet-50 | 20.9 21.2 29.0 37.2 33.9 34.6 | 59.2 60.9 60.4 | 29.7 23.7 38.5 42.9 40.6 42.5 | 63.5 63.4 67.0 |
CANet[ PFENet[ BriNet[ PMMS[ SCL_PFENet[ CMN[ CWT[ | 参数 参数 参数 参数 参数 参数 参数 | ResNet-50 ResNet-101 ResNet-50 ResNet-50 ResNet-50 ResNet-50 ResNet-50 | 32.4 34.4 29.6 37.0 39.3 32.9 | 58.6 61.7 | 37.4 34.3 39.9 43.1 41.3 | 61.9 63.3 |
Table 3
Number of learnable parameters of few-shot algorithms"
模型 | 方法 | 骨干网络 | 参数量 |
---|---|---|---|
PANet[ SG-One[ FWB[ PPNet[ | 原型 原型 原型 原型 | VGG-16 VGG-16 ResNet-101 ResNet-50 | 14.7M 19.0M 43.0M 31.5M |
CANet[ PFENet[ BriNet[ PMMS[ PGNet[ | 参数 参数 参数 参数 参数 | ResNet-50 ResNet-50 ResNet-50 ResNet-50 ResNet-50 | 19.0M 10.8M 20.5M 19.6M 17.2M |
[1] | Dong G, Yan Y, Shen C, et al. Real-time high-perfo-rmance semantic image segmentation of urban street scenes[J]. IEEE Transactions on Intelligent Transpor-tation Systems, 2020,22(6):3258-3274. |
[2] | Badrinarayanan V, Kendall A, Cipolla R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE transactions on pattern analysis and machine intelligence, 2017,39(12):2481-2495. |
[3] | Shaban A, Bansal S, Liu Z, et al. One-Shot Learning for Semantic Segmentation[C]//British Machine Vision Conference, 2017: 167. 1- 167.13. |
[4] | Vinyals O, Blundell C, Lillicrap T, et al. Matching net-works for one shot learning[J]. Advances in neural infor-mation processing systems, 2016,29:3630-3638. |
[5] | Huisman M, van Rijn J N, Plaat A. A survey of deep meta-learning[J]. Artificial Intelligence Review, 2021: 1-59. |
[6] | Boudiaf M, Kervadec H, Masud Z I, et al. Few-Shot Seg-mentation Without Meta-Learning: A Good Transductive Inference Is All You Need? [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 13979-13988. |
[7] | Hospedales T, Antoniou A, Micaelli P, et al. Meta-learning in neural networks: A survey[J]. arXiv preprint arXiv: 2004. 05439, 2020. |
[8] | Vanschoren J. Meta-learning: A survey[J]. arXiv preprint arXiv: 1810. 03548, 2018. |
[9] | Chen W Y, Liu Y C, Kira Z, et al. A closer look at few-shot classification[J]. arXiv preprint arXiv: 1904. 04232, 2019. |
[10] | Xu W, Wang H, Tu Z. Attentional Constellation Nets for Few-Shot Learning[C/OL]. International Conference on Learning Representations, 2021 -06-23[2021-12-11].https://openreview.net/pdf?id=vujTf_I8Kmc. |
[11] | Min J, Kang D, Cho M. Hypercorrelation squeeze for few-shot segmentation[J]. arXiv preprint arXiv: 2104. 01538, 2021. |
[12] | Wu Z, Shi X, Lin G, et al. Learning meta-class memory for few-shot semantic segmentation [C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 517-526. |
[13] | Zhu C, Chen F, Ahmed U, et al. Semantic relation reaso-ning for shot-stable few-shot object detection [C]//Proce-edings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 8782-8791. |
[14] | Hu H, Bai S, Li A, et al. Dense Relation Distillation with Context-aware Aggregation for Few-Shot Object Detec-tion [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 10185-10194. |
[15] | Sun B, Li B, Cai S, et al. FSCE: Few-shot object detec-tion via contrastive proposal encoding [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 7352-7362. |
[16] | Lai X, Tian Z, Jiang L, et al. Semi-Supervised Semantic Segmentation With Directional Context-Aware Consistency [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 1205-1214. |
[17] | Zhong Y, Yuan B, Wu H, et al. Pixel Contrastive-Con-sistent Semi-Supervised Semantic Segmentation [C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 7273-7282. |
[18] | Chang Y T, Wang Q, Hung W C, et al. Weakly-supervised semantic segmentation via sub-category exploration [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 8991-9000. |
[19] | Zhang M, Zhou Y, Zhao J, et al. A survey of semi-and weakly supervised semantic segmentation of images[J]. Artificial Intelligence Review, 2020,53(6):4259-4288. |
[20] | Wang C, Farazi M, Barnes N. Recursive Training for Zero-Shot Semantic Segmentation [C]//2021 International Joint Conference on Neural Networks (IJCNN), IEEE, 2021: 1-8. |
[21] | Bucher M, Vu T H, Cord M, et al. Zero-shot semantic segmentation[J]. Advances in Neural Information Proces-sing Systems, 2019,32:468-479. |
[22] | Rakelly K, Shelhamer E, Darrell T, et al. Conditional networks for few-shot semantic segmentation[J/OL]. 2018 -04-4[2021-12-11]. https://openreview.net/pdf?id=SkMjFKJwG. |
[23] | Dong N, Xing E P. Few-shot semantic segmentation with prototype learning [C]//BMVC, 2018,3(4):79. |
[24] | Tian P, Wu Z, Qi L, et al. Differentiable meta-learning model for few-shot semantic segmentation [C]//Pro-ceedings of the AAAI Conference on Artificial Intel-ligence. 2020,34(07):12087-12094. |
[25] | Yang Y, Meng F, Li H, et al. A new local transformation module for few-shot segmentation [C]//International Con-ference on Multimedia Modeling. Springer, Cham, 2020: 76-87. |
[26] | Yang B, Liu C, Li B, et al. Prototype mixture models for few-shot semantic segmentation [C]//European Confe-rence on Computer Vision. Springer, Cham, 2020: 763-778. |
[27] | Bhunia A K, Bhunia A K, Ghose S, et al. A deep one-shot network for query-based logo retrieval[J]. Pattern Recognition, 2019,96:106965. |
[28] | Nguyen K, Todorovic S. Feature weighting and boosting for few-shot segmentation [C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019: 622-631. |
[29] | Snell J, Swersky K, Zemel R S. Prototypical networks for few-shot learning[J]. arXiv preprint arXiv: 1703. 05175, 2017. |
[30] | Li G, Jampani V, Sevilla-Lara L, et al. Adaptive Prototype Learning and Allocation for Few-Shot Segmentation [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 8334-8343. |
[31] | Liu Y, Zhang X, Zhang S, et al. Part-aware prototype network for few-shot semantic segmentation [C]//Eur-opean Conference on Computer Vision. Springer, Cham, 2020: 142-158. |
[32] | Zhang C, Lin G, Liu F, et al. Canet: Class-agnostic se-gmentation networks with iterative refinement and atten-tive few-shot learning [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 5217-5226. |
[33] | Tian Z, Zhao H, Shu M, et al. Prior guided feature enri-chment network for few-shot segmentation[J]. IEEE Tran-sactions on Pattern Analysis & Machine Intelligence, 2020 ( 01):1-1. |
[34] | Yang X, Wang B, Chen K, et al. Brinet: Towards brid-ging the intra-class and inter-class gaps in one-shot seg-mentation[J]. arXiv preprint arXiv: 2008. 06226, 2020. |
[35] | He K, Zhang X, Ren S, et al. Deep residual learning for image recognition [C]//Proceedings of the IEEE conference on computer vision and pattern recognition, 2016: 770-778. |
[36] | Liu W, Zhang C, Lin G, et al. Crnet: Cross-reference networks for few-shot segmentation [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 4165-4173. |
[37] | Chen L C, Papandreou G, Kokkinos I, et al. Semantic image segmentation with deep convolutional nets and fully connected crfs[J]. arXiv preprint arXiv: 1412. 7062, 2014. |
[38] | Chen L C, Papandreou G, Kokkinos I, et al. Semantic image segmentation with deep convolutional nets and fully connected crfs[J]. arXiv preprint arXiv: 1412. 7062, 2014. |
[39] | Chen L C, Zhu Y, Papandreou G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation [C]//Proceedings of the European confe-rence on computer vision (ECCV), 2018: 801-818. |
[40] | Zhao H, Shi J, Qi X, et al. Pyramid scene parsing network [C]//Proceedings of the IEEE conference on computer vision and pattern recognition, 2017: 2881-2890. |
[41] | Zhang B, Xiao J, Qin T. Self-Guided and Cross-Guided Learning for Few-Shot Segmentation [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 8312-8321. |
[42] | Xie G S, Liu J, Xiong H, et al. Scale-Aware Graph Neural Network for Few-Shot Semantic Segmentation [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 5475-5484. |
[43] | Tao A, Sapra K, Catanzaro B. Hierarchical multi-scale attention for semantic segmentation[J]. arXiv preprint arXiv: 2005. 10821, 2020. |
[44] | Huang Z, Wang X, Huang L, et al. Ccnet: Criss-cross attention for semantic segmentation [C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 603-612. |
[45] | Zhang H, Zhang H, Wang C, et al. Co-occurrent features in semantic segmentation [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-nition, 2019: 548-557. |
[46] | Yuan Y, Chen X, Wang J. Object-contextual repre-sentations for semantic segmentation[C]//Computer Vision-ECCV 2020: 16th European Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part VI 16. Springer International Publishing, 2020: 173-190. |
[47] | Li X, Zhong Z, Wu J, et al. Expectation-maximization attention networks for semantic segmentation [C]//Procee-dings of the IEEE/CVF International Conference on Com-puter Vision, 2019: 9167-9176. |
[48] | Zhang C, Lin G, Liu F, et al. Pyramid graph networks with connection attentions for region-based one-shot semantic segmentation [C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 9587-9595. |
[49] | Wang X, Girshick R, Gupta A, et al. Non-local neural networks [C]//Proceedings of the IEEE conference on computer vision and pattern recognition, 2018: 7794-7803. |
[50] | Xie G S, Xiong H, Liu J, et al. Few-shot semantic segm-entation with cyclic memory network [C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 7293-7302. |
[51] | Lu Z, He S, Zhu X, et al. Simpler is Better: Few-shot Semantic Segmentation with Classifier Weight Transfor-mer [C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 8741-8750. |
[52] | Siam M, Oreshkin B N, Jagersand M. Amp: Adaptive masked proxies for few-shot segmentation [C]//Procee-dings of the IEEE/CVF International Conference on Computer Vision, 2019: 5249-5258. |
[53] | Zhang X, Wei Y, Yang Y, et al. Sg-one: Similarity gui-dance network for one-shot semantic segmentation[J]. IEEE transactions on cybernetics, 2020,50(9):3855-3865. |
[54] | Wang K, Liew J H, Zou Y, et al. Panet: Few-shot image semantic segmentation with prototype alignment [C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 9197-9206. |
[55] | Zhang X, Wei Y, Li Z, et al. Rich Embedding Features for One-Shot Semantic Segmentation[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021: 1-10. |
[56] | Gairola S, Hemani M, Chopra A, et al. Simpropnet: Improved similarity propagation for few-shot image segmentation[J]. arXiv preprint arXiv: 2004. 15014, 2020. |
[57] | Kim A. Fast slic[EB/OL].https://github.com/Algy/fast-slic. |
[58] | Yang L, Zhuo W, Qi L, et al. Mining Latent Classes for Few-shot Segmentation[J]. arXiv preprint arXiv: 2103. 15402, 2021. |
[59] | Ouyang C, Biffi C, Chen C, et al. Self-supervision with superpixels: Training few-shot medical image segmen-tation without annotation [C]//European Conference on Computer Vision. Springer, Cham, 2020: 762-780. |
[60] | Feyjie A R, Azad R, Pedersoli M, et al. Semi-supervised few-shot learning for medical image segmentation[J]. arXiv preprint arXiv: 2003. 08462, 2020. |
[61] | Guo Y, Wang H, Hu Q, et al. Deep Learning for 3D Point Clouds: A Survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020,99:1-1. |
[62] | 王文曦, 李乐林. 深度学习在点云分类中的研究综述[J/OL]. 计算机工程与应用:1-17[ 2021- 10- 25].http://kns.cnki.net/kcms/detail/11.2127.TP.20211021.1009.004.html. |
[63] | Landrieu L, Simonovsky M. Large-scale point cloud semantic segmentation with superpoint graphs [C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 4558-4567. |
[64] | Hu Q, Yang B, Xie L, et al. Randla-net: Efficient semantic segmentation of large-scale point clouds [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020: 11108-11117. |
[65] | Qi C R, Su H, Mo K, et al. Pointnet: Deep learning on point sets for 3d classification and segmentation [C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 652-660. |
[66] | 李梦怡, 朱定局. 基于全卷积网络的图像语义分割方法综述[J]. 计算机系统应用, 2021,30(09):41-52. |
[67] | 刘念. 基于小样本深度学习的遥感地物分类与分割方法研究[D]. 重庆大学, 2019. |
[68] | Pan X, Shi J, Luo P, et al. Spatial as deep: Spatial cnn for traffic scene understanding [C]//Thirty-Second AAAI Conference on Artificial Intelligence. 2018: 7276— 7283. |
[69] | Wang Z, Ren W, Qiu Q. Lanenet: Real-time lane detec-tion networks for autonomous driving[J]. arXiv preprint arXiv: 1807. 01726, 2018. |
[70] | Hou Y, Ma Z, Liu C, et al. Learning lightweight lane detection cnns by self attention distillation [C]//Procee-dings of the IEEE/CVF international conference on computer vision, 2019: 1013-1021. |
[71] | Everingham M, Van Gool L, Williams C K I, et al. The pascal visual object classes (voc) challenge[J]. Interna-tional journal of computer vision, 2010,88(2):303-338. |
[72] | Hariharan B, Arbeláez P, Bourdev L, et al. Semantic contours from inverse detectors [C]//2011 International Conference on Computer Vision. IEEE, 2011: 991-998. |
[73] | Lin T Y, Maire M, Belongie S, et al. Microsoft coco: Common objects in context [C]//European conference on computer vision. Springer, Cham, 2014: 740-755. |
[74] | Li X, Wei T, Chen Y P, et al. Fss-1000: A 1000-class dataset for few-shot segmentation [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 2869-2878. |
[1] | XU Songyuan,LIU Feng. ESDRec: A Data Recommendation Model for Earth Big Data Platform [J]. Frontiers of Data and Computing, 2023, 5(1): 55-64. |
[2] | PU Xiaorong,HUANG Jiaxin,LIU Junchi,SUN Jiayu,LUO Jixiang,ZHAO Yue,CHEN Kecheng,REN Yazhou. A Survey on Clinical Oriented CT Image Denoising [J]. Frontiers of Data and Computing, 2021, 3(6): 35-49. |
[3] | HE Tao,WANG Guifang,MA Tingcan. Discovering Interdisciplinary Research Based on Word Embedding [J]. Frontiers of Data and Computing, 2021, 3(6): 50-59. |
[4] | ZHANG Yining,HE Hongbo,WANG Runqiang. A Survey on Popular Digital Audio Prediction Techniques [J]. Frontiers of Data and Computing, 2021, 3(4): 81-92. |
[5] | CHEN Zijian,LI Jun,YUE Zhaojuan,ZHAO Zefang. Hybrid Recommendation Model Based on Autoencoder and Attribute Information [J]. Frontiers of Data and Computing, 2021, 3(3): 148-155. |
[6] | XIAO Jianping,LONG Chun,ZHAO Jing,WEI Jinxia,HU Anlei,DU Guanyao. A Survey on Network Intrusion Detection Based on Deep Learning [J]. Frontiers of Data and Computing, 2021, 3(3): 59-74. |
[7] | LI Xu,LIAN Yifeng,ZHANG Haixia,HUANG kezhen. Key Technologies of Cyber Security Knowledge Graph [J]. Frontiers of Data and Computing, 2021, 3(3): 9-18. |
[8] | ZHAO Weiyu,ZHANG Honghai,ZHONG Bo. A Deep Learning Based Method for Remote Sensing Image Parcel Segmentation [J]. Frontiers of Data and Computing, 2021, 3(2): 133-141. |
[9] | SHEN Biao,CHEN Yang,YANG Chen,LIU Bowen. Computer Vision Detection and Analysis of Mesoscale Eddies in Marine Science [J]. Frontiers of Data and Computing, 2020, 2(6): 30-41. |
[10] | Ren Huiying,Wang Jing,Wang Yangang. Turbulence Modeling Based on AutoML [J]. Frontiers of Data and Computing, 2020, 2(4): 121-131. |
[11] | Zhang Shenglin,Lin Xiaofei,Sun Yongqian,Zhang Yuzhi,Pei Dan. Research on Unsupervised KPI Anomaly Detection Based on Deep Learning [J]. Frontiers of Data and Computing, 2020, 2(3): 87-100. |
[12] | Chen Lei,Yuan Yuan. Image Recognition of Agricultural Diseases Based on Deep Transfer Learning [J]. Frontiers of Data and Computing, 2020, 2(2): 111-119. |
[13] | Sun Zhenan,Zhang Zhaoxiang,Wang Wei,Liu Fei,Tan Tieniu. Artificial Intelligence: Developments and Advances in 2019 [J]. Frontiers of Data and Computing, 2019, 1(2): 1-16. |
[14] | Liu Chenglin. Document Image Recognition: Retrospective and Perspective of Technology [J]. Frontiers of Data and Computing, 2019, 1(2): 17-25. |
[15] | Yu Yizhou, Ma Jiechao, Shi Dejun, Zhou Zhen. Application of Deep Learning in Medical Imaging Analysis: A Survey [J]. Frontiers of Data and Computing, 2019, 1(2): 37-52. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||