[1] |
黄彦瑜. 锂电池发展简史[J]. 物理, 2007,36(08):643-651.
|
[2] |
Wang X, Lu X, Liu B, et al. Flexible energy‐storage devices: design consideration and recent progress[J]. Advanced materials, 2014,26(28):4763-4782.
doi: 10.1002/adma.v26.28
|
[3] |
闫金定. 锂离子电池发展现状及其前景分析[J]. 航空学报, 2014,35(10):2767-2775.
|
|
闫金定. 锂离子电池发展现状及其前景分析[J]. 航空学报, 2014,35(10):2767-2775.
|
[4] |
张建军, 董甜甜, 杨金凤, 等. 全固态聚合物锂电池的科研进展, 挑战与展望[J]. 储能科学与技术, 2018,7(5):861-868.
|
|
张建军, 董甜甜, 杨金凤, 等. 全固态聚合物锂电池的科研进展, 挑战与展望[J]. 储能科学与技术, 2018,7(5):861-868.
|
[5] |
姜鹏峰, 石元盛, 李康万, 等. 固态电解质锂镧锆氧 (LLZO) 的研究进展[J]. 储能科学与技术, 2020,9(2):523.
|
|
姜鹏峰, 石元盛, 李康万, 等. 固态电解质锂镧锆氧 (LLZO) 的研究进展[J]. 储能科学与技术, 2020,9(2):523.
|
[6] |
Sendek A D, Yang Q, Cubuk E D, et al. Holistic compu-tational structure screening of more than 12000 candidates for solid lithium-ion conductor materials[J]. Energy & Environmental Science, 2017,10(1):306-320.
|
|
Sendek A D, Yang Q, Cubuk E D, et al. Holistic compu-tational structure screening of more than 12000 candidates for solid lithium-ion conductor materials[J]. Energy & Environmental Science, 2017,10(1):306-320.
|
[7] |
Pham H Q, Lee H Y, Hwang E H, et al. Non-flammable organic liquid electrolyte for high-safety and high-energy density Li-ion batteries[J]. Journal of Power Sources, 2018,404:13-19.
doi: 10.1016/j.jpowsour.2018.09.075
|
|
Pham H Q, Lee H Y, Hwang E H, et al. Non-flammable organic liquid electrolyte for high-safety and high-energy density Li-ion batteries[J]. Journal of Power Sources, 2018,404:13-19.
doi: 10.1016/j.jpowsour.2018.09.075
|
[8] |
Haregewoin A M, Wotango A S, Hwang B J. Electrolyte additives for lithium ion battery electrodes: progress and perspectives[J]. Energy & Environmental Science, 2016,9(6):1955-1988.
|
|
Haregewoin A M, Wotango A S, Hwang B J. Electrolyte additives for lithium ion battery electrodes: progress and perspectives[J]. Energy & Environmental Science, 2016,9(6):1955-1988.
|
[9] |
Zhang S, Li J, Jiang N, et al. Rational Design of an Ionic Liquid‐Based Electrolyte with High Ionic Conductivity Towards Safe Lithium/Lithium‐Ion Batteries[J]. Chemistry-An Asian Journal, 2019,14(16):2810-2814.
|
|
Zhang S, Li J, Jiang N, et al. Rational Design of an Ionic Liquid‐Based Electrolyte with High Ionic Conductivity Towards Safe Lithium/Lithium‐Ion Batteries[J]. Chemistry-An Asian Journal, 2019,14(16):2810-2814.
|
[10] |
Sun C, Liu J, Gong Y, et al. Recent advances in all-solid-state rechargeable lithium batteries[J]. Nano Energy, 2017,33:363-386.
doi: 10.1016/j.nanoen.2017.01.028
|
|
Sun C, Liu J, Gong Y, et al. Recent advances in all-solid-state rechargeable lithium batteries[J]. Nano Energy, 2017,33:363-386.
doi: 10.1016/j.nanoen.2017.01.028
|
[11] |
Liu Q, Geng Z, Han C, et al. Challenges and perspectives of garnet solid electrolytes for all solid-state lithium batteries[J]. Journal of Power Sources, 2018,389:120-134.
doi: 10.1016/j.jpowsour.2018.04.019
|
|
Liu Q, Geng Z, Han C, et al. Challenges and perspectives of garnet solid electrolytes for all solid-state lithium batteries[J]. Journal of Power Sources, 2018,389:120-134.
doi: 10.1016/j.jpowsour.2018.04.019
|
[12] |
Meredig B, Agrawal A, Kirklin S, et al. Combinatorial screening for new materials in unconstrained composition space with machine learning[J]. Physical Review B, 2014,89(9):094-104.
|
|
Meredig B, Agrawal A, Kirklin S, et al. Combinatorial screening for new materials in unconstrained composition space with machine learning[J]. Physical Review B, 2014,89(9):094-104.
|
[13] |
Shandiz M A, Gauvin R. Application of machine learning methods for the prediction of crystal system of cathode materials in lithium-ion batteries[J]. Computational Materials Science, 2016,117:270-278.
doi: 10.1016/j.commatsci.2016.02.021
|
|
Shandiz M A, Gauvin R. Application of machine learning methods for the prediction of crystal system of cathode materials in lithium-ion batteries[J]. Computational Materials Science, 2016,117:270-278.
doi: 10.1016/j.commatsci.2016.02.021
|
[14] |
Cubuk E D, Sendek A D, Reed E J. Screening billions of candidates for solid lithium-ion conductors: A transfer learning approach for small data[J]. The Journal of chemical physics, 2019,150(21):214701.
doi: 10.1063/1.5093220
|
|
Cubuk E D, Sendek A D, Reed E J. Screening billions of candidates for solid lithium-ion conductors: A transfer learning approach for small data[J]. The Journal of chemical physics, 2019,150(21):214701.
doi: 10.1063/1.5093220
|
[15] |
Chen A, Zhang X, Zhou Z. Machine learning: accelerat-ing materials development for energy storage and conver-sion[J]. InfoMat, 2020,2(3):553-576.
doi: 10.1002/inf2.v2.3
|
|
Chen A, Zhang X, Zhou Z. Machine learning: accelerat-ing materials development for energy storage and conver-sion[J]. InfoMat, 2020,2(3):553-576.
doi: 10.1002/inf2.v2.3
|
[16] |
Ganuza M L, Ferracutti G, Gargiulo M F, et al. The spinel explorer—interactive visual analysis of spinel group minerals[J]. IEEE transactions on visualization and computer graphics, 2014,20(12):1913-1922.
doi: 10.1109/TVCG.2014.2346754
|
|
Ganuza M L, Ferracutti G, Gargiulo M F, et al. The spinel explorer—interactive visual analysis of spinel group minerals[J]. IEEE transactions on visualization and computer graphics, 2014,20(12):1913-1922.
doi: 10.1109/TVCG.2014.2346754
|
[17] |
Bernard J, Sessler D, Kohlhammer J, et al. Using dashboard networks to visualize multiple patient histories: a design study on post-operative prostate cancer[J]. IEEE transac-tions on visualization and computer graphics, 2018,25(3):1615-1628.
|
|
Bernard J, Sessler D, Kohlhammer J, et al. Using dashboard networks to visualize multiple patient histories: a design study on post-operative prostate cancer[J]. IEEE transac-tions on visualization and computer graphics, 2018,25(3):1615-1628.
|
[18] |
Sun D, Feng Z, Chen Y, et al. DFSeer: A Visual Analytics Approach to Facilitate Model Selection for Demand Fore-casting[C]//Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems. 2020: 1-13.
|
|
Sun D, Feng Z, Chen Y, et al. DFSeer: A Visual Analytics Approach to Facilitate Model Selection for Demand Fore-casting[C]//Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems. 2020: 1-13.
|
[19] |
Esaka T, Greenblatt M. Lithium ion conduction in substi-tuted Li5GaO4 phases[J]. Solid state ionics, 1986,21(3):255-261.
doi: 10.1016/0167-2738(86)90080-9
|
|
Esaka T, Greenblatt M. Lithium ion conduction in substi-tuted Li5GaO4 phases[J]. Solid state ionics, 1986,21(3):255-261.
doi: 10.1016/0167-2738(86)90080-9
|