[1] |
Liu L, Li Y, Li S, Hu N, He Y, Pong R, Lin D, Lu L, Law M . Comparison of next-generation sequencing systems[J]. J Biomed Biotechnol 2012, 2012: 251364.
|
[2] |
Voelkerding KV, Dames SA, Durtschi JD . Next-generation sequencing: from basic research to diagnostics[J]. Clin Chem 2009, 55(4):641-658.
|
[3] |
Heo Y . Improving quality of high-throughput sequencing reads. 2015.
|
[4] |
Consortium UK, Walter K, Min JL, Huang J, Crooks L, Memari Y, McCarthy S, Perry JR, Xu C, Futema M et al. The UK10K project identifies rare variants in health and disease[J]. Nature 2015, 526(7571):82-90.
|
[5] |
Turnbull C, Scott RH, Thomas E, Jones L, Murugaesu N, Pretty FB, Halai D, Baple E, Craig C, Hamblin A et al. The 100 000 Genomes Project: bringing whole genome sequencing to the NHS[J]. BMJ 2018, 361:k1687.
|
[6] |
Gudbjartsson DF, Helgason H, Gudjonsson SA, Zink F, Oddson A, Gylfason A, Besenbacher S, Magnusson G, Halldorsson BV, Hjartarson E et al. Large-scale whole-genome sequencing of the Icelandic population[J]. Nat Genet 2015, 47(5):435-444.
|
[7] |
Telenti A, Pierce LC, Biggs WH, di Iulio J, Wong EH, Fabani MM, Kirkness EF, Moustafa A, Shah N, Xie C et al. Deep sequencing of 10,000 human genomes[J]. Proc Natl Acad Sci U S A 2016, 113(42):11901-11906.
|
[8] |
Nagasaki M, Yasuda J, Katsuoka F, Nariai N, Kojima K, Kawai Y, Yamaguchi-Kabata Y, Yokozawa J, Danjoh I, Saito S et al. Rare variant discovery by deep whole-genome sequencing of 1,070 Japanese individuals[J]. Nat Commun 2015, 6:8018.
|
[9] |
Chiang CWK, Mangul S, Robles C, Sankararaman S . A Comprehensive Map of Genetic Variation in the World's Largest Ethnic Group-Han Chinese[J]. Mol Biol Evol 2018, 35(11):2736-2750.
|
[10] |
Lan T, Lin H, Zhu W, Laurent T, Yang M, Liu X, Wang J, Wang J, Yang H, Xu X et al. Deep whole-genome sequencing of 90 Han Chinese genomes[J]. Gigascience 2017, 6(9):1-7.
|
[11] |
Du Z, Ma L, Qu H, Chen W, Zhang B, Lu X, Zhai W, Sheng X, Sun Y, Li W et al. Whole Genome Analyses of Chinese Population and De Novo Assembly of A Northern Han Genome[J]. Genomics Proteomics Bioinformatics 2019, 17(3):229-247.
|
[12] |
Schlagkamp S, Silva RFd, Deelman E, Schwiegelshohn U . Understanding User Behavior: From HPC to HTC[J]. Procedia Computer Science, 80:2241-2245.
|
[13] |
Cabellos L, Campos I, Fernández-del-Castillo E, Owsiak M, Palak B, P?óciennik M . Scientific workflow orchestration interoperating HTC and HPC resources[J]. Computer Physics Communications, 182(4):890-897.
|
[14] |
Sun Y, Wang X, Zhao X-G, Shi Z, Zhang L . First-principle high-throughput calculations of carrier effective masses of two-dimensional transition metal dichalcogenides[J]. Journal of Semiconductors 2018, 39(07):39-45.
|
[15] |
Jing X, Xing H, Mao Z. On-chip structure and addressing scheme design for 2-D block data processing in a 64-core array system[C]. In: IEEE/IFIP 19th International Conference on VLSI and System-on-Chip, VLSI-SoC 2011, Kowloon, Hong Kong, China, October 3-5, 2011: 2011.
|
[16] |
Leggett RM, Ramirez-Gonzalez RH, Clavijo BJ, Waite D, Davey RP . Sequencing quality assessment tools to enable data-driven informatics for high throughput genomics[J]. Front Genet 2013, 4:288.
|
[17] |
Martin M . Cutadapt removes adapter sequences from high-throughput sequencing reads[J]. EMBnet.journal,2011, 17(1):3.
|
[18] |
Li H . Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM.ARXiv13033997Q-Bio. 2013.
|
[19] |
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M et al.The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data[J]. Genome Res 2010, 20(9):1297-1303.
|
[20] |
Wang K, Li M, Hakonarson H . ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data[J]. Nucleic Acids Res 2010, 38(16):e164.
|
[21] |
Wang Y, Li G, Ma M, He F, Song Z, Zhang W, Wu C . GT-WGS: an efficient and economic tool for large-scale WGS analyses based on the AWS cloud service[J]. BMC Genomics 2018, 19(Suppl 1):959.
|
[22] |
Jones DC, Ruzzo WL, Peng X, Katze MG . Compression of next-generation sequencing reads aided by highly efficient de novo assembly[J]. Nucleic Acids Res 2012, 40(22):e171.
|
[23] |
Zhang Y, Li L, Yang Y, Yang X, Zhu Z . Light-weight reference-based compression of FASTQ data[J]. BMC Bioinformatics 2015, 16(1):188.
|
[24] |
Bonfield JK, Mahoney MV . Compression of FASTQ and SAM format sequencing data[J]. PLoS One 2013, 8(3):e59190.
|
[25] |
Grumbach S, Tahi F. Compression of DNA sequences[C]. In: Data Compression Conference, 1993 DCC ' 93:1993.
|
[26] |
Ziv J, Lempel A . A universal algorithm for sequential data compression[J]. IEEE Transactions on Information Theory 1977, 23(3):337-343.
|
[27] |
Grumbach S, Tahi F . A new challenge for compression algorithms: Genetic sequences[J].Information Processing&Management 1994, 30(6):875-886.
|
[28] |
Deorowicz S, Grabowski S . Compression of DNA sequence reads in FASTQ format[J]. Bioinformatics, 27(6):860-862.
|
[29] |
Huffman DA . A method for the construction of minimum-redundancy codes[J]. Resonance 2006, 11(2):91-99.
|
[30] |
Roguski U, Deorowicz S . DSRC 2—Industry-oriented compression of FASTQ files[J]. Bioinformatics, 30(15):2213-2215.
|
[31] |
Hach F, Numanagic I, Alkan C, Sahinalp SC . SCALCE: boosting sequence compression algorithms using locally consistent encoding[J]. Bioinformatics, 28(23):3051-3057.
|
[32] |
Xing Y, Li G, Wang Z, Feng B, Song Z, Wu C . GTZ: a fast compression and cloud transmission tool optimized for FASTQ files[J]. Bmc Bioinformatics, 18(S16):549.
|
[33] |
Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethinking the Inception Architecture for Computer Vision. In: arXiv e-prints. 2015.
|
[34] |
Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A. Going Deeper with Convolutions. In: arXiv e-prints. 2014.
|