数据与计算发展前沿 ›› 2025, Vol. 7 ›› Issue (1): 38-55.

CSTR: 32002.14.jfdc.CN10-1649/TP.2025.01.003

doi: 10.11871/jfdc.issn.2096-742X.2025.01.003

• 专刊:生成式人工智能 • 上一篇    下一篇

基于生成对抗网络和扩散模型的人脸年龄编辑综述

金家立1,2(),高思远3,高满达3,王文彬3,柳绍祯4,孙哲南1,2,*()   

  1. 1.中国科学院大学,人工智能学院,北京 100049
    2.中国科学院自动化研究所,模式识别实验室,北京 100190
    3.国家能源集团新能源技术研究院有限公司,北京 102200
    4.北京理工大学,计算机学院,北京 100081
  • 收稿日期:2024-11-13 出版日期:2025-02-20 发布日期:2025-02-21
  • 通讯作者: *孙哲南(E-mail: znsun@nlpr.ia.ac.cn
  • 作者简介:金家立,中国科学院大学人工智能学院,硕士研究生,研究方向为计算机视觉,生物特征识别。
    本文中负责文献整理和论文撰写。
    JIN Jiali is currently a graduate student at the School of Artificial Intelligence, University of Chinese Academy of Sciences. His research interests include computer vision and biometrics.
    In this paper, he is responsible for literature collation and paper writing.
    E-mail: jinjiali24@mails.ucas.ac.cn|孙哲南,中国科学院自动化研究所,研究员,博士生导师,中国科学院大学人工智能学院岗位教授,天津中科智能识别产业技术研究院院长,国际模式识别学会会士 IAPR Fellow 和生物特征识别技术委员会主席,担任国际期刊 IEEE Transactions on Biometrics, Behaviour, and Identity Science 编委。主要研究方向为生物特征识别、模式识别、计算机视觉。
    本文中负责写作指导以及论文最终审定。
    SUN Zhenan is currently a professor with the Institute of Automation, Chinese Academy of Sciences. He is also a professor at the School of Artificial Intelligence, University of Chinese Academy of Sciences, and the director of the Tianjin Academy for Intelligent Recognition Technologies. He serves as an Associate Editor of the IEEE Transactions on Biometrics, Behaviour, and Identity Science. He is a fellow of the IAPR. His research interests include biometrics, pattern recognition, and computer vision.
    In this paper, he is responsible for paper writing instruction and manuscript reviewing.
    E-mail: znsun@nlpr.ia.ac.cn
  • 基金资助:
    国家能源集团科技项目(GJNY-23-99);国家自然科学基金(U23B2054)

A Survey of Face Age Editing Based on Generative Adversarial Networks and Diffusion Models

JIN Jiali1,2(),GAO Siyuan3,GAO Manda3,WANG Wenbin3,LIU Shaozhen4,SUN Zhenan1,2,*()   

  1. 1. School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
    2. NLPR & MAIS, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
    3. China Electric Science and Technology Research Institution Ltd., Beijing 102200, China
    4. School of Computer Science, Beijing Institute of Technology, Beijing 100081, China
  • Received:2024-11-13 Online:2025-02-20 Published:2025-02-21

摘要:

【目的】近年来,深度生成模型在人脸年龄编辑任务中取得了显著进展,本文对基于生成对抗网络和扩散模型等深度生成模型的人脸年龄编辑方法进行汇总。【方法】本文首先介绍人脸年龄编辑的基本概念、相关数据集、评价指标,然后分析常用的生成对抗网络、扩散模型以及其变体在年龄编辑任务中的应用,归纳现有模型在年龄准确性、身份一致性、生成图像质量等方面的性能表现,并讨论不同评价指标的适用性。【结果】基于生成对抗网络和扩散模型的年龄编辑技术已经在生成图像的质量和年龄预测的准确性上取得了显著进展,但在处理较大年龄跨度时,面部细节的生成仍存在不足。【结论】未来的人脸年龄编辑研究可以通过开发更大规模、更高质量的数据集,结合3D人脸重建技术和扩散模型高效的采样算法,进一步提升模型的生成能力和应用效果。

关键词: 深度学习, 生成对抗网络, 扩散模型, 属性编辑, 人脸年龄编辑

Abstract:

[Purpose] In recent years, deep generative models have made significant progress in the task of facial age editing. This paper summarizes facial age editing methods based on deep generative models such as Generative Adversarial Networks (GANs) and diffusion models. [Methods] This survey first introduces the basic concepts of face age editing, relevant datasets, and evaluation metrics. It then analyzes the applications of commonly used GANs, Diffusion Models, and their variants in age editing tasks. The performance of existing models in terms of age accuracy, identity consistency, and image quality is summarized, and the suitability of different evaluation metrics is discussed. [Results] Age editing technology based on GANs and Diffusion Models have achieved significant improvements in image quality and age prediction accuracy. However, challenges remain in generating fine details, particularly when dealing with large age gaps. [Conclusions] Future research in face age editing can further enhance model generation capability and application effects by developing larger, higher-quality datasets and integrating 3D face reconstruction technology with efficient sampling algorithms from Diffusion Models.

Key words: deep learning, generative adversarial networks, attributes editing, diffusion models, face age editing