[1] |
温景超, 李旭红, 李泱, 等. 光子集成电路发展综述[J]. 集成电路应用, 2019, 36(7): 1-3.
|
[2] |
白冰, 杨钊, 于波, 等. 光子神经网络——重新定义AI芯片[J]. 人工智能, 2018(2): 96-105.
|
[3] |
尹悦鑫, 许馨如, 丁颖智, 等. 三维光子集成芯片的进展与挑战(特邀)[J]. 光子学报, 2022(7): 333-348.
|
[4] |
Optics and Photonics: Essential Technologies for Our Nation[R]. The National Academies Press, 2013.
|
[5] |
Fast-Track Action Committee on Optics and Photonics: Building a Brighter Future with Optics and Photonics[R]. Committee on Science of the National Science And Technology Council, 2014.
|
[6] |
美国“国家光子计划”产业联盟[EB/OL]. (2015-8-06)[2023-6-26]. http://trb.mofcom.gov.cn/article/zuixindt/201508/20150801073409.shtml.
|
[7] |
National Strategy for Advanced Manufacturing[R]. National Science and Technology Council, 2022.
|
[8] |
European electro-optic and nonlinear PIC platform based on lithium niobate[EB/OL]. (2021-12-15)[2023-6-27]. https://cordis.europa.eu/project/id/101016138.
|
[9] |
PATTERN[EB/OL]. (2022-11-28)[2023-6-27]. https://cordis.europa.eu/project/id/101094416.
|
[10] |
Europe’s age of light[EB/OL]. (2023-1-01)[2023-6-27]. https://www.photonics21.org/download/ppp-services/photonics-downloads/Europes-age-of-light-Photonics-Roadmap-C1.pdf.
|
[11] |
董金鑫. 欧洲发布2023-2030年光子学战略研究与创新议程[EB/OL]. (2023-6-15)[2023-6-26]. http://www.casisd.cn/zkcg/ydkb/kjqykb/2023/kjqykb202306/202306/t20230615_6778557.html.
|
[12] |
Research in Photonics[EB/OL]. [2023-6-26]. https://www.bmbf.de/bmbf/en/research/hightech-and-innovati-on/research-in-photonics/research-in-photonics_node.html.
|
[13] |
Agenda Photonik 2020: Die Photonik-Branche im Auf-bruch[EB/OL].(2010-12-01)[2023-6-26]. https://analyt-icalscience.wiley.com/do/10.1002/gitfach.3456.
|
[14] |
Priority Programme “Electronic-Photonic Integrated Sys-tems for Ultrafast Signal Processing”[EB/OL].(2021-1-27)[2023-6-26]. https://www.dfg.de/en/research_fu-nding/announcements_proposals/2021/info_wissen-schaft_21_09/index.html.
|
[15] |
The health of photonics[EB/OL]. [2023-6-26]. https://www.iop.org/about/publications/health-photonics.
|
[16] |
UK Innovation Strategy: leading the future by creating it[EB/OL]. (2021-7-22)[2023-6-26]. https://www.gov.uk/government/publications/uk-innovation-strategy-leading-the-future-by-creating-it.
|
[17] |
The UK Photonics Vision for 2035 [EB/OL]. (2021-11-02)[2023-6-26]. https://photonicsuk.org/photonics-2035-a-new-vision-from-plg#:-:text=The%20vision%20indicates%20that%20by%202035%20UK%20photonics,three%20most%20productive%20manufacturing%20sectors%20in%20the%20UK.
|
[18] |
National semiconductor strategy[EB/OL]. (2023-5-19)[2023-6-26]. https://www.gov.uk/government/publications/national-semiconductor-strategy.
|
[19] |
Quantum Flagship publishes preliminary Strategic Research and Industry Agenda[EB/OL]. (2022-11-21)[2023-6-26]. https://qt.eu/about-quantum-flagship/newsroom/quantum-flagship-publishes-preliminary-strategic-research-and-industry-agenda/.
|
[20] |
Bundeskabinett beschließt Regierungsentwurf für den Bundeshaushalt 2023[EB/OL].(2022-7-01)[2023-6-26]. https://www.bmwk.de/Redaktion/DE/Pressemitteilungen/2022/07/20220701-bundeskabinett-beschliesst-regierungsentwurf-fuer-den-bundeshaushalt-2023.html.
|
[21] |
L•赫罗斯托夫斯基, M•霍克伯格. 硅光子设计——从器件到系统[M]. 郑煜等译. 北京: 科学出版社, 2021: 3-19.
|
[22] |
Synopsys and Juniper Networks Invest in New Company to Pursue Fast-Growing Silicon Photonics Market[EB/OL]. (2022-4-04)[2023-6-26]. https://news.synopsys.com/2022-04-04-Synopsys-and-Juniper-Networks-Inv-est-in-New-Company-to-Pursue-Fast-Growing-Silicon-Photonics-Market.
|
[23] |
BOGAERTS W, FIERS M, DUMON P. Design Chall-enges in Silicon Photonics[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(4): 8202008.
|
[24] |
NSF announces nearly $50 million partnership with Ericsson, IBM, Intel, and Samsung to support the future of semiconductor design and manufacturing[EB/OL]. (2023-1-26)[2023-6-28]. https://beta.nsf.gov/news/nsf-announces-nearly-50-million-partnership.
|
[25] |
王子昊, 王霆, 张建军. 硅基光电异质集成的发展与思考[J]. 中国科学院院刊, 2022, 37(3): 360-367.
|
[26] |
马浩然, 李筱敏, 王曰海, 等. 硅基光子芯片研究进展与挑战[J]. 半导体光电, 2022(2): 218-229.
|
[27] |
乔玲玲, 汪旻, 伍荣波, 等. 超低损耗铌酸锂光子学[J]. 光学学报, 2021(8): 175-200.
|
[28] |
龚旗煌, 罗先刚, 刘伍明, 等. 纳光电子与光子芯片研究:发展与挑战[J]. 中国科学基金, 2023(3): 410-417
|
[29] |
庄瑞. 基于集成光波导的光学器件的研究[D]. 南京: 南京邮电大学, 2022.
|
[30] |
NIST and AIM Photonics hook up on R&D[EB/OL]. (2022-12-22)[2023-6-28]. https://www.electronicsw-eekly.com/news/business/nist-and-aim-photonics-hook-up-on-rd-2022-12/#respond.
|
[31] |
IRDS 2021: Metrology[R]. https://irds.ieee.org/edit-ions/2021/metrology.
|
[32] |
孔月婵, 李海波, 马琨傑, 等. 微波光子异质/异构集成技术[J]. 微波学报, 2022, 38(5): 46-53.
|
[33] |
吴冰冰, 赵文玉, 张海懿. 光子集成技术及产业发展研究[J]. 电信科学, 2015, 31(1): 122-127.
|
[34] |
SNIGIREV V, RIEDHAUSER A, LIHACHEV G, et al. Ultrafast tunable lasers using lithium niobate integrated photonics[J]. Nature, 2023, 615: 411-417.
doi: 10.1038/s41586-023-05724-2
|
[35] |
TSMC launches advanced packaging for silicon photo-nics applications[EB/OL]. (2021-8-31)[2023-6-28]. https://www.digitimes.com/news/a20210831PD201.html.
|
[36] |
刘秀娟, 吴杜雄. 光调制器技术发展现状及标准化研究[J]. 电子测试, 2021(18): 137-138.
|
[37] |
Fastest optical transmission at 2Tbits/s per wavelength[EB/OL]. (2022-10-17)[2023-6-28]. https://www.eenewseurope.com/en/fastest-optical-transmission-over-2tbits-s-per-wavelength/.
|
[38] |
Intel Launches Integrated Photonics Research Center[EB/OL]. (2021-12-08)[2023-6-28]. https://www.intel.com/content/www/us/en/newsroom/news/intel-launches-integrated-photonics-research-center.html.
|
[39] |
PAVESI L. Thirty Years in Silicon Photonics: A Personal View[J]. Frontiers in Physics, 2021, 9: 786028.
doi: 10.3389/fphy.2021.786028
|
[40] |
FLAHERTY N. £1m project for 1W PCSEL for AI[EB/OL]. (2023-4-24)[2023-6-28]. https://www.eene-wseurope.com/en/1m-project-for-1w-pcsel-for-ai/.
|
[41] |
ZHANG X S, KWON K, HENRIKSSON J, et al. A lar-ge-scale microelectromechanical-systems-based silicon photonics LiDAR[J]. Nature, 2022, 603: 253-258.
doi: 10.1038/s41586-022-04415-8
|
[42] |
王俊, 杨晓飞. 光子芯片研究进展及展望[J]. 世界科学, 2020 (12): 29-31.
|
[43] |
SHASTRI B J, TAIT A N, DE LIMA T F, et al. Photonics for artificial intelligence and neuromorphic computing[J]. Nature Photonics, 2021, 15: 102-114.
doi: 10.1038/s41566-020-00754-y
|
[44] |
TONG L, PENG Z R, LIN R F, et al. 2D materials-based homogeneous transistor-memory architecture for neuromorphic hardware[J]. Science, 2021, 373 (6561): 1353-1358.
doi: 10.1126/science.abg3161
pmid: 34413170
|
[45] |
MENG X Y, ZHANG G J, SHI N N, et al. Compact optical convolution processing unit based on multimode interference[J]. Nature Commun, 2023, 14: 3000.
doi: 10.1038/s41467-023-38786-x
|
[46] |
陆延青, 肖敏, 彭茹雯, 等. 人工微结构中的量子、类量子效应及功能集成光子芯片研究进展[J]. 中国基础科学, 2020, 22(1): 11-24.
|
[47] |
王新文, 金贤敏. 光量子计算研究与应用[J]. 信息通信技术与政策, 2022 (7): 37-43.
|
[48] |
REN RJ, GAO J, ZHOU W H, et al. 128 identical qu-antum sources integrated on a single silica chip[J]. Phy-sical Review Applied, 2021, 16: 054026.
|
[49] |
MADSEN L S, LAUDENBACH F, ASKARANI M F, et al. Quantum computational advantage with aprog-rammable photonic processor[J]. Nature, 2022, 606: 75-81.
doi: 10.1038/s41586-022-04725-x
|
[50] |
ASHTIANI F, GEERS A J, AFLATOUNI F. An on-chip photonic deep neural network for image classification[J]. Nature, 2022, 606: 501-506.
doi: 10.1038/s41586-022-04714-0
|
[51] |
BAO J M, FU Z R, PRAMANIK T, et al. Very-large-scale integrated quantum graph photonics[J]. Nature Photonics, 2023, 17: 573-581.
doi: 10.1038/s41566-023-01187-z
|
[52] |
CLARKE P. Quantum photonics project aims to standardize packaging[EB/OL]. (2022-9-20)[2023-6-27]. https://www.eenewseurope.com/en/quantum-photonics-project-aims-to-standardize-packaging/.
|
[53] |
CHEN B, WEI Y M, ZHAO T M, et al. Bright solid-state sources for single photons with orbital angular mom-entum[J]. Nat Nanotechnol, 2021, 16: 302-307.
doi: 10.1038/s41565-020-00827-7
|
[54] |
ZHI H, ZENG J, NGYUEN MAP, AI X Y, et al. Inte-grated room temperature single-photon source for quan-tum key distribution[J]. Optics Letters, 2022, 47 (7): 1673-1676.
doi: 10.1364/OL.454450
|
[55] |
TIRANOV A, ANGELOPOULOU V, VAN DIEPEN C J, et al. Collective super- and subradiant dynamics between distant optical quantum emitters[J]. Science, 2023, 379 (6630): 389-393.
doi: 10.1126/science.ade9324
pmid: 36701463
|
[56] |
WANG X N, JIAO X F, WANG B, et al. Quantum frequency conversion and single-photon detection with lithium niobate nanophotonic chips[J]. npj Quantum Information, 2023, 9: 38.
doi: 10.1038/s41534-023-00704-w
|
[57] |
XIANG C, LIU J Q, GUO J, et al. Laser soliton micro-combs heterogeneously integrated on silicon[J]. Science, 2021, 373(6550): 99-103.
doi: 10.1126/science.abh2076
|
[58] |
XU X Y, WANG T X, CHEN P C, et al. Femtosecond laser writing of lithium niobate ferroelectric nanodomains[J]. Nature, 2022, 609: 496-501.
doi: 10.1038/s41586-022-05042-z
|
[59] |
GUO Q B, QI X Z, ZHANG L S, et al. Ultrathin quantum light source with van der Waals NbOCl2 crystal[J]. Nature, 2023, 613: 53-59.
doi: 10.1038/s41586-022-05393-7
|