| [1] | 戴霖. 基于应用的高性能计算平台作业调度算法研究[J]. 电声技术, 2019,(5):52-53. | 
																													
																						| [2] | Wang, Xiebing, Huang, Kai, Knoll, Alois, Qian, Xue-hai. A Hybrid Framework for Fast and Accurate GPU Performance Estimation through Source-Level Analysis and Trace-Based Simulation[C]. In 2019 IEEE Internati-onal Symposium on High Performance Computer Arch-itecture (HPCA), 2009: 506-518. | 
																													
																						| [3] | Amaris Gonzalez, Marcos Dyab, Mohamed, Trystram, Denis, Camargo, Raphael, Goldman, Alfredo. A Com-parison of GPU Execution Time Prediction using Mach-ine Learning and Analytical Modeling[C]. In 15th IEEE International Symposium on Network Computing and Applications, 2016:326-333. | 
																													
																						| [4] | Lublin U, Feitelson D G. The workload on parallel sup-ercomputers: modeling the characteristics of rigid jobs[J]. Journal of Parallel and Distributed Computing, 2003, 63(11): 1105-1122. doi: 10.1016/S0743-7315(03)00108-4
 | 
																													
																						| [5] | Feitelson D G and Rudolph L. Job Scheduling Strategies for Parallel Processing[C]. In Berlin Heidelberg: Sprin-ger-Verlag, 2005: 176-193. | 
																													
																						| [6] | Guo, Jian & Nomura, Akihiro & Barton, Ryan & Haoyu, Zhang & Matsuoka, Satoshi. Erratum to: Machine Lear-ning Predictions for Underestimation of Job Runtime on HPC System[C]. In Supercomputing Frontiers, 2018. E1-E2. | 
																													
																						| [7] | Pinel, Frédéric & Yin, Jian-xiong & Hundt, Christian & Kieffer, Emmanuel & Varrette, Sébastien & Bouvry, Pascal & See, Simon. Evolving a Deep Neural Network Training Time Estimator[J]. In Communications in Com-puter and Information, 2020, 1173:13-24. | 
																													
																						| [8] | Rezaei, Mahdi & Salnikov, Alexey. Machine Learning Techniques to Perform Predictive Analytics of Task Qu-eues Guided by Slurm[J]. In Global Smart Industry Con-ference (GloSIC), 2018,1-6. | 
																													
																						| [9] | 吴桂宝, 沈瑜, 张文帅, et al.  Runtime Prediction of Jobs for Backfilling Optimization面向回填优化的作业时长预测[J]. 小型微型计算机系统, 2019, 040(001):6-12. | 
																													
																						| [10] | Wang, Qiqi & Li, Jing & Wang, Shuo & Wu, Guibao. A Novel Two-Step Job Runtime Estimation Method Based on Input Parameters in HPC System[J]. In Carbohydrate Polymers, 2021, 273:311-316. | 
																													
																						| [11] | 许伦凡. 基于历史数据的作业时间预测[D]. 北京: 中国工程物理研究院, 2019. | 
																													
																						| [12] | Olson R S, Moore J H. TPOT: A Tree-Based Pipeline Optimization Tool for Automating Machine Learning[C]. Proceedings of the Workshop on Automatic Machine Learning, 2016, 64:66-74. | 
																													
																						| [13] | Swami A, Jain R. Scikit-learn: Machine Learning in Python[J]. Journal of Machine Learning Research, 2013, 12(10):2825-2830. | 
																													
																						| [14] | Feitelson D G, Tsafrir D, Krakov D. Experience with using the Parallel Workloads Archive[J]. Journal of Para-llel and Distributed Computing, 2014, 74:2967-2982. |