| [1] |
JORION P, GOETZMANN W. Global Stock Markets in the Twentieth Century[J]. The journal of finance, 1999, 54(3): 953-980.
doi: 10.1111/jofi.1999.54.issue-3
|
| [2] |
ARIYO A, ADEWUMI A, AYO C. Stock Price Prediction Using the ARIMA Model[C]. IEEE UKSim-AMSS 16th International Conference on Computer Modelling and Simulation, 2014: 106-112.
|
| [3] |
BOYLE P. Options: A Monte Carlo approach[J]. Journal of Financial Economics 1977, 4(3): 323-338.
doi: 10.1016/0304-405X(77)90005-8
|
| [4] |
DIXON M, HALPERIN I, BILOKON P. Machine Learning in Finance[M]. Springer International Publishing, 2020, 1170: 111-116.
|
| [5] |
LIU A, FENG B, WANG B, et al. Deepseek-v2:A Strong, Economical, and Efficient Mixture-of-Experts Language Model[EB/OL]. [2024-02-10]. https://arxiv.org/abs/2405.04434.
|
| [6] |
SUTTON RS, BARTO AG. Reinforcement Learning: An Introduction[J]. Cambridge: MIT press, 1998, 1(1): 9-11.
|
| [7] |
Total Market Value of the U.S. Stock Market[EB/OL]. [2024-02-10]. https://siblisresearch.com/data/us-stock-market-value/.
|
| [8] |
全国股票交易统计表[EB/OL]. [2024-02-10]. https://data.eastmoney.com/cjsj/gpjytj.html.
|
| [9] |
FAN J, YAO Q. The Elements of Financial Econometrics[M]. Cambridge University Press, 2017: 53-58.
|
| [10] |
CHODAKOWSKA E, NAZARKO J, NAZARKO Ł. Arima Models in Electrical Load Forecasting and Their Robustness to Noise[J]. Energies, 2021, 14(23): 7952.
doi: 10.3390/en14237952
|
| [11] |
LIU J. Navigating the Financial Landscape: The Power and Limitations of the ARIMA Model[J]. Highlights Sci. Eng. Technol., 2024, 88: 747-752.
doi: 10.54097/9zf6kd91
|
| [12] |
PATLE A, CHOUHAN DS. SVM Kernel Functions for Classification[C]. IEEE International Conference on Advances in Technology and Engineering, 2013: 1-9.
|
| [13] |
KANAPARTHI V. Robustness Evaluation of LSTM-based Deep Learning Models for Bitcoin Price Prediction in the Presence of Random Disturbances[EB/OL]. [2024-02-10]. https://doi.org/10.21203/rs.3.rs-3906529/v1.
|
| [14] |
WATKINS CJ, DAYAN P. Q-learning[J]. Machine learning, 1992, 8: 279-292.
|
| [15] |
VAN HASSELT H, GUEZ A, SILVER D. Deep Reinforcement Learning with Double Q-learning[C]. AAAI Conference on Artificial Intelligence, 2016, 30(1): 2094-2100.
|
| [16] |
NIU H, LI S, LI J. MetaTrader: An Reinforcement Learning Approach Integrating Diverse Policies for Portfolio Optimization[C]. ACM International Conference on Information & Knowledge Management, 2022: 1573-1583.
|
| [17] |
ZONG C, WANG C, QIN M, et al. MacroHFT: Memory Augmented Context-aware Reinforcement Learning On High Frequency Trading[C]. ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2024: 4712-4721.
|
| [18] |
QIN M, SUN S, ZHANG W, et al. Earnhft: Efficient Hierarchical Reinforcement Learning for High Frequency Trading[C]. AAAI Conference on Artificial Intelligence, 2024, 38(13): 14669-14676.
|
| [19] |
SUN S, XUE W, WANG R, et al. DeepScalper: A Risk-Aware Reinforcement Learning Framework to Capture Fleeting Intraday Trading Opportunities[C]. ACM International Conference on Information & Knowledge Management, 2022: 1858-1867.
|
| [20] |
WANG Z, HUANG B, TU S, et al. Deeptrader: A Deep Reinforcement Learning Approach for Risk-Return Balanced Portfolio Management with Market Conditions Embedding[C]. AAAI Conference on Artificial Intelligence, 2021(1): 643-650.
|
| [21] |
LIN S, BELING PA. An End-to-End Optimal Trade Execution Framework based on Proximal Policy Optimization[C]. Conference on International Joint Conferences on Artificial Intelligence, 2021: 4548-4554.
|
| [22] |
SAWHNEY R, WADHWA A, AGARWAL S, et al. Quantitative Day Trading from Natural Language using Reinforcement Learning[C]. Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2021: 4018-4030.
|
| [23] |
YE Y, PEI H, WANG B, et al. Reinforcement-learning Based Portfolio Management with Augmented Asset Movement Prediction States[C]. AAAI Conference on Artificial Intelligence, 2020, 34(1): 1112-1119.
|
| [24] |
YIN Q Y, YU T T, SHEN S Q, et al. Distributed Deep Reinforcement Learning: A Survey and a Multi-player Multi-agent Learning Toolbox[J]. Machine Intelligence Research, 2024: 411-430.
|
| [25] |
LIU XY, YANG H, GAO J, et al. FinRL: Deep Reinforcement Learning Framework to Automate Trading in Quantitative Finance[C]. ACM International Conference on AI in Finance, 2021: 1-9.
|
| [26] |
LI Z, LIU XY, ZHENG J, et al. Finrl-podracer: High Performance and Scalable Deep Reinforcement Learning for Quantitative Finance[C]. ACM international conference on AI in finance, 2021: 1-9.
|