数据与计算发展前沿 ›› 2025, Vol. 7 ›› Issue (4): 101-117.

CSTR: 32002.14.jfdc.CN10-1649/TP.2025.04.009

doi: 10.11871/jfdc.issn.2096-742X.2025.04.009

• 专刊:空间科学大数据智能算法模型与工具 • 上一篇    下一篇

伽马射线暴及相关高能暂现源观测数据的科学分析方法

杨俊1,2,*(),张彬彬1,2   

  1. 1.南京大学天文与空间科学学院江苏 南京 210093
    2.南京大学现代天文与天体物理教育部重点实验室江苏 南京 210093
  • 收稿日期:2025-05-30 出版日期:2025-08-20 发布日期:2025-08-21
  • 通讯作者: 杨俊
  • 作者简介:杨俊,南京大学天文与空间科学学院,博士研究生,主要研究方向为伽马射线暴及相关天体物理现象,其研究主要聚焦于若干特殊的伽马射线暴事件,通过对观测数据的综合分析,揭示它们的物理起源、中心引擎以及辐射机制。
    本文主要承担的工作为:(1)设计并开发科学分析流程与关键算法;(2)将所开发科学分析流程应用于实际观测数据;(3)撰写论文初稿。
    YANG Jun, is a Ph.D. candidate at the School of Astronomy and Space Science, Nanjing University. His primary research interests include gamma-ray bursts and their associated astrophysical phenomena. Specifically, his research has centered on several peculiar GRBs, revealing their physical origins, central engines, and radiation mechanisms through a comprehensive analysis of observational data.
    In this study, he is mainly responsible for designing and implementing the scientific analysis workflow and key algorithms, applying the developed workflow to real observational data, and drafting the manuscript.
    E-mail: jyang@smail.nju.edu.cn
  • 基金资助:
    国家重点研发计划“高能天体空间观测特征信息提取与知识挖掘”(2022YFF0711404);国家自然科学基金“基于爱因斯坦探针卫星的伽马射线暴研究”(13001106)

Scientific Methods for Analyzing Observational Data of Gamma-Ray Bursts and Related High-Energy Transients

YANG Jun1,2,*(),ZHANG Binbin1,2   

  1. 1. School of Astronomy and Space Science, Nanjing University, Nanjing, Jiangsu 210093, China
    2. Key Laboratory of Modern Astronomy and Astrophysics, Nanjing University, Nanjing, Jiangsu 210093, China
  • Received:2025-05-30 Online:2025-08-20 Published:2025-08-21
  • Contact: YANG Jun

摘要:

【应用背景】天文学研究高度依赖于观测数据的获取与分析。对于伽马射线暴等高能暂现源而言,其辐射在极短时间尺度内剧烈变化,呈现出显著的时变与能谱演化特征。如何在复杂观测数据中高效且精准地提取此类剧烈爆发现象的时变与能谱信息,已成为当前高能时域天体物理研究中亟待突破的关键技术挑战。【目的】本文旨在构建一套面向伽马射线暴及相关高能暂现源观测数据的科学分析流程,重点聚焦于高效率、高精度的关键算法与核心技术的研发与应用。【方法】在时变分析方面,本文提出一种融合基线矫正、贝叶斯块分割、显著性计算与多项式拟合的自动化信号识别与背景拟合算法;在能谱分析方面,本文构建了一种基于贝叶斯推断的能谱拟合框架,用于实现模型参数及其不确定性的稳健估计。【结果】该分析流程及其核心算法已成功应用于伽马射线暴的实际观测数据分析中,能够有效识别和分离信号与背景,并基于贝叶斯推断算法实现关键能谱参数的可靠估计。【结论】本文提出的数据分析流程显著提升了伽马射线暴及相关高能暂现源观测数据的分析效率与准确性,为高能天体爆发现象的自动化数据分析提供了一种可复用的技术路径,具有广泛的应用前景和科研价值。

关键词: 伽马射线暴, 暂现源, 天文数据处理方法, 信号识别, 贝叶斯推断

Abstract:

[Context] Astronomical research heavily relies on the acquisition and analysis of observational data. For high-energy transients such as gamma-ray bursts (GRBs), radiation undergoes rapid and intense variations over extremely short timescales, characterized by significant temporal and spectral evolution. Efficiently and accurately extracting these dynamic features from complex observational data has become a critical technical challenge in high-energy time-domain astrophysics. [Objective] This study aims to develop a scientific data analysis pipeline tailored for GRBs and related high-energy transient sources, with a particular focus on the development and application of key algorithms and core technologies that ensure high efficiency and precision. [Methods] For temporal analysis, we propose an automated signal identification and background fitting algorithm that integrates baseline correction, Bayesian block segmentation, significance calculation, and polynomial fitting. For spectral analysis, we construct a Bayesian inference-based spectral fitting framework designed to robustly estimate model parameters and their uncertainties. [Results] The proposed analysis pipeline and its key algorithms have been successfully applied to real observational data of GRBs. The approach effectively identifies and separates signal from background and enables reliable estimation of key spectral parameters through a Bayesian inference algorithm. [Conclusion] The data analysis framework presented in this work significantly improves the efficiency and accuracy of observational data analysis for GRBs and related high-energy transient sources. It offers a reusable technical approach for the automated analysis of high-energy astrophysical explosion phenomena and holds substantial potential for broad application and scientific advancement.

Key words: gamma-ray bursts, transient sources, astronomical data processing methods, signal identification, Bayesian inference