[1] |
BOSNJAK L, SRES J, BRUMEN B. Brute-force and dictionary attack on hashed real-world passwords[C]// 2018 41st international convention on information and communication technology, electronics and microelectronics, IEEE, 2018, 1(1): 1161-1166.
|
[2] |
DONG L, HAN Z, PETROPULU A, et al. Improving wireless physical layer security via cooperating relays[J]. IEEE Transactions on Signal Processing, 2009, 58(3): 1875-1888.
doi: 10.1109/TSP.2009.2038412
|
[3] |
IYER C S, SEDAMKAR R R, GUPTA S. A novel idea on multimedia encryption using hybrid crypto approach[J]. Elsevier Procedia Computer Science, 2016, 79(1): 293-298.
|
[4] |
GUO Y, HU G, SHAO D. RMHIL: A Rule Matching Algorithm Based on Heterogeneous Integrated Learning in Software Defined Network[J]. MDPI Sensors, 2022, 22(13): 4739.
doi: 10.3390/s22134739
|
[5] |
SHARAFF A, NAGWANI N K. Email thread identification using latent Dirichlet allocation and non-negative matrix factorization based clustering techniques[J]. Journal of Information Science, 2016, 42(2): 200-212.
doi: 10.1177/0165551515587854
|
[6] |
CHEN T, YIN X, PENG L, et al. Monitoring and recognizing enterprise public opinion from high-risk users based on user portrait and random forest algorithm[J]. MDPI Axioms, 2021, 10(2): 106.
|
[7] |
WANG R, NIE K, WANG T, et al. Deep learning for anomaly detection[C]// Proceedings of the 13th international conference on web search and data mining, 2020, 1(1): 894-896.
|
[8] |
SALEM M B, STOLFO S J. Masquerade attack detection using a search-behavior modeling approach[J]. Columbia University, Computer Science Department, Technical Report CUCS-027-09, 2009: 181-200.
|
[9] |
BEN SALEM M, STOLFO S J. Decoy document deployment for effective masquerade attack detection[C]// International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011: 35-54.
|
[10] |
CAMPOBASSO M, ALLODI L. Impersonation-as-a-service: Characterizing the emerging criminal infrastructure for user impersonation at scale[C]// Proceedings of the 2020 ACM Conference on Computer and Communications Security, 2020: 1665-1680.
|
[11] |
CHOU H C, LEE H C, HSUEH C W, et al. Password cracking based on special keyboard patterns[J]. International Journal of Innovative Computing Information and Control, 2012, 8(1): 387-402.
|
[12] |
TIRADO E, TURPIN B, BELTZ C, et al. A new distributed brute-force password cracking technique[C]// Future Network Systems and Security:4th International Conference, 2018: 117-127.
|
[13] |
HUSSAIN S R, ECHEVERRIA M, CHOWDHURY O, et al. Privacy Attacks to the 4G and 5G Cellular Paging Protocols Using Side Channel Information[C]// 26th Annual Network and Distributed System Security Symposium, 2019: 669-684.
|
[14] |
DAINOTTI A, KING A, CLAFFY K C, et al. Analysis of a“/0” Stealth Scan from a Botnet[C]// Proceedings of the 2012 Internet Measurement Conference, 2012: 1-14.
|
[15] |
CHATTERJEE R, BONNEAY J, JUELS A, et al. Cracking-resistant password vaults using natural language encoders[C]// 2015 IEEE Symposium on Security and Privacy, IEEE, 2015: 481-498.
|
[16] |
OZA P, PATEL V M. C2ae: Class conditioned auto-encoder for open-set recognition[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 2307-2316.
|
[17] |
SEKAR R, GUPTA A, FRULLO J, et al. Specification-based anomaly detection: a new approach for detecting network intrusions[C]// Proceedings of the 9th ACM conference on Computer and communications security, 2002: 265-274.
|
[18] |
HU T, GUO Q, SHEN X, et al. Utilizing unlabeled data to detect electricity fraud in AMI: A semisupervised deep learning approach[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(11): 3287-3299.
doi: 10.1109/TNNLS.2018.2890663
pmid: 30714931
|
[19] |
YANG K, REN J, ZHU Y, et al. Active learning for wireless IoT intrusion detection[J]. IEEE Wireless Communications, 2018, 25(6): 1925.
|
[20] |
RUFF L, VANDERMEULEN R A, GORNITZ N, et al. Deep semi-supervised anomaly detection[C]// Proceedings of the 2020 International Conference on Learning Representations, 2020: 300-309.
|
[21] |
FREEMAN D, JAIN S, DURMUTH M, et al. Who Are You? A Statistical Approach to Measuring User Authenticity[C]// Proceedings of the 2016 Network and Distributed System Security Symposium, 2016, 16: 21-24.
|
[22] |
ZOU Y, YU Z, KUMAR B V K, et al. Unsupervised domain adaptation for semantic segmentation via class-balanced self-training[C]// Proceedings of the European conference on computer vision, 2018: 289-305.
|
[23] |
ZHOU Y, SONG X, ZHANG Y, et al. Feature encoding with autoencoders for weakly supervised anomaly detection[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 33(6): 2454-2465.
doi: 10.1109/TNNLS.2021.3086137
|
[24] |
CATILLO M, PECCHIA A, VILLANO U. AutoLog: Anomaly detection by deep autoencoding of system logs[J]. Expert Systems with Applications, 2022, 191: 116263.
doi: 10.1016/j.eswa.2021.116263
|
[25] |
ZONG B, SONG Q, MIN M R, et al. Deep autoencoding gaussian mixture model for unsupervised anomaly detection[C]// Proceedings of the 2018 International conference on learning representations, 2018: 277-286.
|