数据与计算发展前沿 ›› 2026, Vol. 8 ›› Issue (1): 219-231.

CSTR: 32002.14.jfdc.CN10-1649/TP.2026.01.018

doi: 10.11871/jfdc.issn.2096-742X.2026.01.018

• 技术与应用 • 上一篇    

基于小样本数据的晶体合成工艺智能推荐研究

朱冬1,2(),杨小渝1,2,*(),唐述杰2,3,朱锋锋2,3,孔潇2,3,郭艳峰4,5,李兵6,秦志鹏6   

  1. 1.中国科学院计算机网络信息中心,北京 100083
    2.中国科学院大学,北京 100049
    3.中国科学院上海微系统与信息技术研究所,上海 200050
    4.上海科技大学,物质科学与技术学院,上海 201210
    5.上海科技大学,拓扑物理实验室,上海 201210
    6.华为技术有限公司,广东 东莞 523808
  • 收稿日期:2025-03-27 出版日期:2026-02-20 发布日期:2026-02-02
  • 通讯作者: 杨小渝
  • 作者简介:朱冬,中国科学院计算机网络信息中心,博士研究生,专业方向为计算机应用技术,目前主要研究方向为人工智能在材料科学领域的应用。
    本文中负责模型整体架构设计、实现和评估,完成论文初稿撰写。
    ZHU Dong is a Ph.D. candidate at the Computer Network Information Center, Chinese Academy of Sciences, majoring in Computer Application Technology. His current research focuses on the application of artificial intelligence in the field of materials science.
    In this paper, he was responsible for the overall model architecture design, implementation, and evaluation, as well as drafting the initial version of the manuscript.
    E-mail: zhudong@cnic.cn|杨小渝,中国科学院计算机网络信息中心,研究员,博士,英国剑桥大学博士后,中国科学院“百人计划”引进人才。目前主要研究方向为高通量材料集成计算、多尺度模拟计算、和AI驱动的新材料研发。
    在本文中提出了方法与思路,制定论文框架,论文指导和修改。
    YANG Xiaoyu, Ph.D., completed his postdoctoral research at the University of Cambridge, UK, and is currently a Researcher at the Computer Network Information Center, Chinese Academy of Sciences. He was recruited through the "Hundred Talents Program" of the Chinese Academy of Sciences. His main research interests include high-throughput integrated computational materials science, multiscale simulation, and AI-driven new material development.
    In this paper, he proposed the idea and participated in formulating the framework, provided guidance, and revised the manuscript.
    E-mail: kxy@cnic.cn
  • 基金资助:
    国家自然科学基金面上项目“生成式AI驱动的高分子智能设计方法与技术研究”(62376258);国家自然科学基金联合基金项目“人工智能驱动的海洋防腐涂层材料按需逆向设计”(U24B20126);云南省重点研发计划-材料基因工程项目“高强塑积;轻质高强韧耐磨钢及其大型耐磨件关键成形技术研发(202403AA08001)

Research on An Intelligent Recommendation Model for Crystal Synthesis Procedures Based on Small-Sample Data

ZHU Dong1,2(),YANG Xiaoyu1,2,*(),TANG Shujie2,3,ZHU Fengfeng2,3,KONG Xiao2,3,GUO Yanfeng4,5,LI Bing6,QIN Zhipeng6   

  1. 1. Computer Network Information Center, Chinese Academy of Sciences, Beijing 100083, China
    2. University of Chinese Academy of Sciences, Beijing 100049, China
    3. Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
    4. School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
    5. Laboratory for Topological Physics, ShanghaiTech University, Shanghai 201210, China
    6. Huawei Technologies Co., Ltd., Dongguan, Guangdong 523808, China
  • Received:2025-03-27 Online:2026-02-20 Published:2026-02-02
  • Contact: YANG Xiaoyu

摘要:

【背景】晶体合成是制备新材料的关键环节,但工艺条件复杂多变,实验数据稀缺,工艺确定困难。【问题】如何基于有限的“结构-工艺”数据实现晶体合成工艺的智能生成与可行性评估,是当前亟待解决的问题。【方法】本文基于晶体结构理解增强模型CrysBert,构建了适用于小样本的结构-工艺可行性判别模型;基于晶体结构生成模型CrysGPT,构建了晶体合成工艺生成模型;通过CrysBert和CrysGPT的协同,实现晶体工艺的自动生成与筛选。【结果】基于162条小样本数据训练,工艺判别模型准确率达到0.90,明显优于传统方法;工艺生成模型推荐的候选工艺,经判别模型评价,可行工艺比例达到60.7%,与领域专家推荐工艺的成功率(62.3%)接近。【结论】本研究验证了通过CrysBert和CrysGPT的协同,可为晶体合成工艺的智能设计提供新途径。

关键词: CrysBert, CrysGPT, 工艺智能推荐, 小样本数据, 晶体工艺设计

Abstract:

[Background] Crystal synthesis is vital for developing new materials but challenging due to complex, variable conditions and limited experimental data. [Problem] Intelligently generating and evaluating crystal synthesis processes from limited “structure-process” datasets is urgently needed. [Methods] We constructed a feasibility evaluation model based on the structure-understanding model (CrysBert) optimized for small datasets, and a generative synthesis model utilizing the large structure-generation model (CrysGPT). Integrating both models enabled automatic process generation and screening. [Results] Trained on 162 small-sample data points, the discriminative model achieved an accuracy of 0.90, outperforming traditional methods. The generative model efficiently produced candidate processes, achieving a feasibility rate of 60.7% after discriminative screening, approaching the expert benchmark (62.3%). [Conclusions] This study demonstrates that integrating CrysBert and CrysGPT provides a promising new pathway for intelligent crystal synthesis design.

Key words: CrysBert, CrysGPT, crystal synthesis process intelligent recommendation, small-sample data, crystal synthesis process design