| [1] |
QI R, ZHU B, HAN Z, et al. High-Throughput Screening of Stable Single-Atom Catalysts in CO2 Reduction Reactions[J]. ACS Catalysis, 2022, 12(14): 8269-8278.
doi: 10.1021/acscatal.2c02149
|
| [2] |
ZHANG B, ABBAS A, ROMAGNOLI J A. Monitoring crystal growth based on image texture analysis using wavelet transformation[J]. IFAC Proceedings Volumes, 2012, 45(15): 33-38.
|
| [3] |
ASKARI S, BASHARDOUST SIAHMARD A, HALLADJ R, et al. Different techniques and their effective parameters in nano SAPO-34 synthesis: A review[J]. Powder Technology, 2016, 301: 268-287.
doi: 10.1016/j.powtec.2016.06.018
|
| [4] |
RAWLINGS J B, MILLER S M, WITKOWSKI W R. Model identification and control of solution crystallization processes: a review[J]. Industrial & Engineering Chemistry Research, 1993, 32(7): 1275-1296.
doi: 10.1021/ie00019a002
|
| [5] |
ROSSO V W, YIN Z, ABOURAHMA H, et al. High-Throughput Crystallization Screening Technique with Transmission PXRD Analysis[J]. Organic Process Research & Development, 2023, 27(8): 1437-1444.
|
| [6] |
BAIRD S G, LIU M, SAYEED H M, et al. Data-Driven Materials Discovery and Synthesis using Machine Learning Methods[M]. Comprehensive Inorganic Chemistry III (Third Edition), 2023: 3-23.
|
| [7] |
谢建新, 宿彦京, 薛德祯, 等. 机器学习在材料研发中的应用[J]. 金属学报, 57(11): 1343-1361.
|
| [8] |
HIMANEN L, GEURTS A, FOSTER A S, et al. Data-Driven Materials Science: Status, Challenges, and Perspectives[J]. Advanced Science, 2019, 6(21): 1900808.
doi: 10.1002/advs.v6.21
|
| [9] |
MERCHANT A, BATZNER S, SCHOENHOLZ S S, et al. Scaling deep learning for materials discovery[J]. Nature, 2023, 624(7990): 80-85.
doi: 10.1038/s41586-023-06735-9
|
| [10] |
ZHU D, XIN Z, ZHENG S, et al. Addressing the Accuracy-Cost Trade-off in Material Property Prediction Using a Teacher-Student Strategy[J]. Journal of Chemical Theory and Computation, 2024, 20(13): 5743-5750.
doi: 10.1021/acs.jctc.4c00625
|
| [11] |
ZHU D, WANG C, ZOU P, et al. Deep-Learning Aided Atomic-Scale Phase Segmentation toward Diagnosing Complex Oxide Cathodes for Lithium-Ion Batteries[J]. Nano Letters, 2023, 23(17): 8272-8279.
doi: 10.1021/acs.nanolett.3c02441
|
| [12] |
SONG Z, LU S, JU M, et al. Is Large Language Model All You Need to Predict the Synthesizability and Precursors of Crystal Structures?[EB/OL]. arXiv, 2024.
|
| [13] |
MYERSON A S, ERDEMIR D, LEE A Y. Handbook of Industrial Crystallization[M]. 3rd ed. Cambridge: Cambridge University Press, 2019: 249-266.
|
| [14] |
JHA D, CHOUDHARY K, TAVAZZA F, et al. Enhancing materials property prediction by leveraging computational and experimental data using deep transfer learning[J]. Nature Communications, 2019, 10(1): 5316.
doi: 10.1038/s41467-019-13297-w
pmid: 31757948
|
| [15] |
FISHER O J, WATSON N J, ESCRIG J E, et al. Considerations, challenges and opportunities when developing data-driven models for process manufacturing systems[J]. Computers & Chemical Engineering, 2020, 140: 106881.
doi: 10.1016/j.compchemeng.2020.106881
|
| [16] |
LUO Y, BAG S, ZAREMBA O, et al. MOF Synthesis Prediction Enabled by Automatic Data Mining and Machine Learning[J]. Angewandte Chemie International Edition, 2022, 61(19): e202200242.
|
| [17] |
GRATTAFIORI A, DUBEY A, JAUHRI A, et al. The Llama 3 Herd of Models[EB/OL]. arXiv, 2024.
|
| [18] |
LU W, LUU R K, BUEHLER M J. Fine-tuning large language models for domain adaptation: Exploration of training strategies, scaling, model merging and synergistic capabilities[EB/OL]. arXiv, 2024.
|
| [19] |
MULLIN J W. 6-Crystal growth[M]// MULLINJ W. Crystallization (Fourth Edition). Oxford: Butterworth-Heinemann, 2001: 216-288.
|
| [20] |
DEVLIN J, CHANG M W, LEE K, et al. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding[EB/OL]. arXiv, 2019.
|
| [21] |
SUTSKEVER I, VINYALS O, LE Q V. Sequence to Sequence Learning with Neural Networks[C]// Advances in Neural Information Processing Systems: Vol. 27. Curran Associates, Inc., 2014.
|
| [22] |
WEI J, BOSMA M, ZHAO V Y, et al. Finetuned Language Models Are Zero-Shot Learners[EB/OL]. arXiv, 2022.
|
| [23] |
OUYANG L, WU J, JIANG X, et al. Training language models to follow instructions with human feedback[EB/OL]. arXiv, 2022.
|
| [24] |
SAHOO P, SINGH A K, SAHA S, et al. A Systematic Survey of Prompt Engineering in Large Language Models: Techniques and Applications[EB/OL]. arXiv, 2024.
|
| [25] |
LI X L, LIANG P. Prefix-Tuning: Optimizing Continuous Prompts for Generation[EB/OL]. arXiv, 2021.
|
| [26] |
DETTMERS T, PAGNONI A, HOLTZMAN A, et al. QLoRA: Efficient Finetuning of Quantized LLMs[EB/OL]. arXiv, 2023.
|
| [27] |
BREIMAN L. Random Forests[J]. Machine Learning, 2001, 45(1): 5-32.
doi: 10.1023/A:1010933404324
|