数据与计算发展前沿 ›› 2026, Vol. 8 ›› Issue (1): 207-218.

CSTR: 32002.14.jfdc.CN10-1649/TP.2026.01.017

doi: 10.11871/jfdc.issn.2096-742X.2026.01.017

• 技术与应用 • 上一篇    下一篇

基于摘要辅助认知增强的多模态科学数据检索方法

杨斌1(),吕梁2,3,吕晓雯3,乔振1,*()   

  1. 1.山东省科学技术情报研究院,山东 济南 250101
    2.山东大学,软件学院,山东 济南 250101
    3.山大地纬软件股份有限公司,山东 济南 250200
  • 收稿日期:2025-01-03 出版日期:2026-02-20 发布日期:2026-02-02
  • 通讯作者: 乔振
  • 作者简介:杨斌,山东省科学技术情报研究院副院长,硕士,主要从事科技情报管理和科技情报研究工作。
    本文承担工作为:科技数据资料汇总及论文整体撰写思路规划。
    YANG Bin, Vice President of Shandong Institute of Scientific and Technical Information, holds a Master’s degree and is mainly engaged in the management and research of scientific and technological information.
    In this paper, he is mainly responsible for summarizing scientific and technological data and planning the overall structure and writing strategy of the manuscript.
    E-mail: 13793166466@163.com|乔振,山东省科学技术情报研究院副研究员,硕士,主要从事资源管理、产业研究工作。
    本文承担工作为:基于提取关键词的多模态增强检索模块及相关实验部分撰写。
    QIAO Zhen, holding a master’s degree, is an associate researcher at Shandong Institute of Scientific and Technical Information. He is mainly engaged in resource management and industrial research work.
    In this paper, he is mainly responsible for writing the multimodal enhanced retrieval module based on keyword extraction and related experimental sections.
    E-mail: qz02412@163.com
  • 基金资助:
    山东省重点研发计划(软科学)项目“科学数据中心体系布局与建设研究”(2025RZA0808);山东省大数据局政务信息化项目“山东省科学数据管理系统”(鲁数审核[2023]36号)

Multi-Format Scientific Data Retrieval Method Based on Abstract Assisted Cognitive Enhancement

YANG Bin1(),LYU Liang2,3,LYU Xiaowen3,QIAO Zhen1,*()   

  1. 1. Shandong Institute of Scientific and Technical Information, Jinan, Shandong 250101, China
    2. School of Software, Shandong University, Jinan, Shandong 250101, China
    3. Dareway Software Co., Ltd., Jinan, Shandong 250200, China
  • Received:2025-01-03 Online:2026-02-20 Published:2026-02-02
  • Contact: QIAO Zhen

摘要:

【目的】由于当前科技项目数据资源存在术语专业性高、知识关联复杂、检索效率低等问题,传统检索模式难以满足多模态科学数据关联检索的需求,导致已有科技项目数据资源难以实现知识共享及融合应用。【方法】针对上述问题,为推进科技资源开放共享,提出一种基于摘要辅助认知增强的多模态科学数据检索方法。首先,构建基于大模型的多模态科学数据语义表示模型,将专业领域知识与结构引导机制相结合,生成包含关键知识的结构化摘要;随后,基于结构化摘要提供的关键字、描述信息等知识,构建定向思维链多路引导的多模态科学数据检索模型,通过认知提示知识增强结合多步动态推理,实现科学数据的多维关联分析,提升科学数据领域数据资源检索性能。【结果】最后,依托某省科学数据管理系统开展实验,结果表明,该方法对比当前已有Modular RAG框架,在测试集上的准确率和Rouge-n指标分别提升4.65%和3.18%。【结论】实验结果验证了所提方法在多模态、知识关联复杂的科学数据检索的适用性。

关键词: 多模态科学数据检索, 多视角语义关联, 结构化摘要, 认知增强, 思维链多路引导

Abstract:

[Objective] Due to the specialization of terminology, complex knowledge associations and low retrieval efficiency in the current technology project data resources, the traditional retrieval mode is difficult to meet the needs of multimodal scientific data association retrieval, resulting in the difficulty of knowledge sharing and integrated application of existing technology project data resources. [Methods] To address the above problems, a multimodal scientific data retrieval method based on summary-assisted cognitive enhancement is proposed to promote open sharing of scientific and technological resources. Firstly, a multimodal scientific data semantic representation model based on large models is constructed, which combines professional domain knowledge with structural guidance mechanisms to generate structured summaries containing key knowledge. Subsequently, based on the knowledge of keywords and description information provided by structured abstracts, a multimodal scientific data retrieval model is constructed with directed thought chain multiplex guidance. By combining cognitive cueing with multi-step dynamic reasoning, this model enables multi-dimensional correlation analysis of scientific data and improves retrieval performance. [Results] The results show that, compared with the existing Modular RAG framework, the proposed method improves accuracy and Rouge-n index on the test set by 4.65% and 3.18% respectively. [Conclusions] These results verify the applicability of the proposed method to scientific data retrieval involving multimodal data and complex knowledge associations.

Key words: multi-format scientific data retrieval, multi-perspective semantic association, structured summary, cognitive enhancement, multi-channel guidance of thinking chain