数据与计算发展前沿 ›› 2023, Vol. 5 ›› Issue (6): 173-184.

CSTR: 32002.14.jfdc.CN10-1649/TP.2023.06.016

doi: 10.11871/jfdc.issn.2096-742X.2023.06.016

• • 上一篇    

D2D联合模式选择与资源分配的研究

郑奕佳*(),杜永文,黄菊,张希权   

  1. 兰州交通大学,电子与信息工程学院,甘肃 兰州 730070
  • 收稿日期:2022-07-29 出版日期:2023-12-20 发布日期:2023-12-25
  • 通讯作者: 郑奕佳(E-mail: 2467239283@qq.com
  • 作者简介:郑奕佳,兰州交通大学电子与信息工程学院,硕士研究生,研究方向为无线通信网络。
    本文主要负责实验调研及论文撰写。
    ZHENG Yijia is a graduate student of the School of Electronics and Information Engineering, Lanzhou Jiaotong University. Her research direction is wireless communication networks.In this paper, she is mainly responsible for experimental research and paper writing.
    E-mail: 2467239283@qq.com
  • 基金资助:
    国家自然科学基金(11461038);甘肃省科技支撑计划(144NKCA040)

Research on D2D Joint Mode Selection and Resource Allocation

ZHENG Yijia*(),DU Yongwen,HUANG Ju,ZHANG Xiquan   

  1. School of Electronic and Information Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
  • Received:2022-07-29 Online:2023-12-20 Published:2023-12-25

摘要:

【目的】 在通信资源相对匮乏的情况下,针对D2D直通技术复用蜂窝网络资源可能会带来干扰管理、通信模式选择和资源分配等众多技术问题。【方法】 本文研究选用模式选择、信道分配和功率控制相结合的方案,由于此方案分配问题是NP-hard问题,因此本文将优化问题划分为两个子问题,其一是为D2D选择合适的通信模式和为每个D2D用户分配合理的信道资源,其二是通过改进的灰狼优化算法为D2D用户和蜂窝用户进行功率优化,以提高整体系统吞吐量,同时保证干扰最小化。【结果】 综合上述不同场景下的实验结果表明,本文方案能够有效地降低干扰,提高系统吞吐量,改进的灰狼算法为本方案提升了大约4%的平均吞吐量。【局限】 灰狼优化算法处于不断地发展演变之中,自身也存在着一定的局限性。【结论】 在后续的工作中将继续探索并考虑网络状态和用户移动性,在保证系统性能的同时提高系统吞吐量。

关键词: 蜂窝网络, D2D, 模式选择, 资源分配, 灰狼算法

Abstract:

[Objective] In the case of relatively scarce communication resources, the D2D direct reuse technology of cellular network resources may cause numerous technical problems such as interference management, communication mode selection, and resource allocation. [Methods] This paper studies the scheme of the combination of mode selection, channel distribution, and power control. Because optimizing the combination scheme is an NP-hard problem, this paper divides the optimization problem into two sub-problems: one is to select an appropriate communication mode and allocate reasonable channel resources for each D2D user, and the other is to optimize the power for D2D users and honeycomb users by the improved gray wolf algorithm. The goal of this approach is to improve the overall system throughput and reduce the interference. [Results] The experimental results in different scenarios show that this approach can effectively reduce the interference and improve the system throughput. The improved gray wolf algorithm has increased the average throughput by about 4% for this solution. [Limitations] The Gray Wolf Optimization Algorithm is continuously evolving and introduces certain limitations. [Conclusions] The subsequent work will continue to explore and consider the network status and the user mobility, improving both performance and throughput of the system.

Key words: cellular network, D2D, mode selection, resource allocation, gray wolf algorithm