数据与计算发展前沿 ›› 2021, Vol. 3 ›› Issue (5): 4-27.
doi: 10.11871/jfdc.issn.2096-742X.2021.05.001PID:21.86101.2/JFDC.ISSN.2096.742X.2019.01.012
CSTR:32002.14.jfdc.issn.2096.742X.2019.01.012
• 专刊:我国信息技术领域“卡脖子”问题与对策 • 上一篇 下一篇
收稿日期:
2021-10-01
出版日期:
2021-10-20
发布日期:
2021-11-24
通讯作者:
许海涛,彭练矛
作者简介:
许海涛,北京华碳元芯电子科技有限责任公司CTO,北京元芯碳基集成电路研究院研发部部长,博士。研究方向为碳基集成电路技术及其应用。 基金资助:
XU Haitao1,*(),PENG Lianmao2,*()
Received:
2021-10-01
Online:
2021-10-20
Published:
2021-11-24
Contact:
XU Haitao,PENG Lianmao
摘要:
【目的】人工智能、大数据等领域的发展对芯片算力和能效的要求越来越高,硅基芯片技术受到功耗墙、存储墙和尺寸缩减等限制,面临日益严峻的挑战,需要新的沟道材料和新的芯片架构推动信息电子产业的继续向前,碳纳米管CMOS技术是目前最具潜力的下一代集成电路技术。【方法】针对碳纳米管集成电路发展中需要突破的关键性技术,分别从芯片用碳纳米管材料、碳纳米管晶体管技术和系统集成三个方面,阐述其研究进展,分析其面临的挑战和需要解决的问题。【结果】碳纳米管集成电路技术经过二十多年的发展,在材料、器件和系统集成等方面均取得了重大进步与突破,包括高纯度半导体碳纳米管阵列材料的制备、接近理论极限的高性能弹道碳纳米管晶体管器件、碳纳米管三维单片集成系统等。【结论】碳纳米管是构建场效应晶体管的理想沟道材料,可以实现高速低功耗的弹道输运,结合三维单片集成的架构优化,碳纳米管集成电路技术在性能、功耗、面积、功能集成、成本等方面将展现出巨大的优势,满足未来信息处理对芯片的需求。
许海涛,彭练矛. 碳基集成电路技术研究进展与展望[J]. 数据与计算发展前沿, 2021, 3(5): 4-27.
XU Haitao,PENG Lianmao. Carbon-Based Integrated Circuit Technology: Development and Forecast[J]. Frontiers of Data and Computing, 2021, 3(5): 4-27.
[1] |
Cao Q. Carbon nanotube transistor technology for More-Moore scaling[J]. Nano Res. 2021, 14:3051-3069.
doi: 10.1007/s12274-021-3459-z |
[2] | Ronald G. Dreslinski, Michael Wieckowski, et al. Near threshold computing: overcoming performance degrad-ation from aggressive voltage Scaling[D]. In Proc. ISCA Workshop on Energy-Efficient Design, 2009. |
[3] | H.-S. Philip Wong. Carbon Nanotube Digital Nanosy-stems[D]. PKU CNT Workshop, 2015. |
[4] | Tathagata Srimani, G. Hills, M.M. Shulaker, et al. Heter-ogeneous integration of BEOL logic and memory in a commercial foundry: multi-tier complementary carbon nanotube logic and resistive RAM at a 130 nm node[J]. VLSI, 2020, 9265083. |
[5] | Aaron Franklin. Nanomaterials in transistors: From high-performance to thin-film applications[J]. Science, 2015, 349:6249 |
[6] | Frank Schwierz. Graphene transistors[J]. Nat. Nano-technol., 2010, 5:487. |
[7] |
F Yang et al. Chirality-specific growth of single-wall- ed carbon nanotubes on solid alloy catalysts[J]. Nature, 2014, 510:522-524.
doi: 10.1038/nature13434 |
[8] |
Shuchen Zhang, Zhang Jin, et al. Arrays of horizontal carbon nanotubes of controlled chirality grown using designed catalysts[J]. Nature, 2017, 543:234-238.
doi: 10.1038/nature21051 |
[9] |
Jin S., Dunham S., Song J. et al. Using nanoscale thermocapillary flows to create arrays of purely semicon-ducting single-walled carbon nanotubes[J]. Nature Nanotech., 2013, 8:347-355.
doi: 10.1038/nnano.2013.56 |
[10] |
A. A. Green, M. C. Hersam. Nearly single-chirality single-walled carbon nanotubes produced via orthogonal iterative density gradient ultracentrifugation[J]. Adv. Mater., 2011, 23:2185.
doi: 10.1002/adma.v23.19 |
[11] | S. Ghosh, S. M. Bachilo, R. B. Weisman. Advanced sorting of single-walled carbon nanotubes by nonlin-ear density-gradient ultracentrifugation[J]. Nat. Nanote-chnol., 2010, 5:443. |
[12] |
J. A. Fagan, M. Zheng, et al. Isolation of specific small-diameter single-wall carbon nanotube species via aque-ous two-phase extraction[J]. Adv. Mater., 2014, 26:2800.
doi: 10.1002/adma.v26.18 |
[13] |
H. Gui, J. K. Streit, M. Zheng, et al. Redox sorting of carbon nanotubes[J]. Nano Lett., 2015, 15:1642.
doi: 10.1021/nl504189p |
[14] |
Huiliang Wang, Zhenan Bao. Conjugated polymer sorting of semiconducting carbon nanotubes and their electronic applications[J]. Nano Today, 2015, 10:737-758.
doi: 10.1016/j.nantod.2015.11.008 |
[15] |
Qiu S., Li Q. W., et al. Solution-processing of high-purity semiconducting single-walled carbon nanotubes for electronics devices[J]. Adv. Mater., 2019, 31:1800750.
doi: 10.1002/adma.v31.9 |
[16] |
Liyuan Liang, Wanyi Xie, Song Qiu, Qingwen Li, et al. High-efficiency dispersion and sorting of single-walled carbon nanotubes via non-covalent interactions[J]. J. Mater. Chem. C, 2017, 5:11339-11368.
doi: 10.1039/C7TC04390B |
[17] |
Darryl Fong, Alex Adronov. Recent developments in the selective dispersion of single-walled carbon nanotubes using conjugated polymers[J]. Chem. Sci., 2017, 8:7292-7305.
doi: 10.1039/c7sc02942j pmid: 29163880 |
[18] |
Mistry K.S B.A. Larsen, and J.L. Blackburn. High-yield dispersions of large-diameter semiconducting single-walled carbon nanotubes with tunable narrow chirality distributions[J]. ACS Nano, 2013, 7(3):2231-2239.
doi: 10.1021/nn305336x pmid: 23379962 |
[19] |
Gu J.T., J. Han, D. Liu, X.Q. Yu, L.X. Kang, S. Qiu, H.H. Jin, H.B. Li, et al. Solution-processable high-purity semiconducting SWCNTs for large-area fabrication of high-performance thin-film transistors[J]. Small, 2016, 12(36):4993-4999.
doi: 10.1002/smll.201600398 |
[20] |
Liu L, Peng LM. et al. Aligned, high-density semicon-ducting carbon nanotube arrays for high-performance electronics[J]. Science, 2020, 368:850-856.
doi: 10.1126/science.aba5980 |
[21] |
Lei T, Chen X, Pitner G, Wong HS, Bao Z. Removable and recyclable conjugated polymers for highly selective and high-yield dispersion and release of low-cost carbon nanotubes[J]. J. Am. Chem. Soc., 2016, 138(3):802-805.
doi: 10.1021/jacs.5b12797 |
[22] |
Park H., Afzali A., Han SJ. et al. High-density integr-ation of carbon nanotubes via chemical self-assembly[J]. Nature Nanotech., 2012, 7:787-791.
doi: 10.1038/nnano.2012.189 |
[23] |
Sun W, Shen J, Yin P. et al. Precise pitch-scaling of carbon nanotube arrays within three-dimensional DNA nanotrenches[J]. Science, 2020, 368(6493):874-877.
doi: 10.1126/science.aaz7440 |
[24] |
Cao Q., Han Sj., Tulevski G. et al. Arrays of single-walled carbon nanotubes with full surface coverage for high-performance electronics[J]. Nat. Nanotechnol., 2013, 8:180-186.
doi: 10.1038/nnano.2012.257 |
[25] |
Jinkins K. R., Chan J., Jacobberger R. M., Berson A., Arnold M. S. Substrate‐wide confined shear alignment of carbon nanotubes for thin film transistors[J]. Adv. Electron. Mater., 2019, 5:1800593.
doi: 10.1002/aelm.v5.2 |
[26] |
Yongho Joo, Michael S. Arnold, Padma Gopalan et al. Dose-controlled, floating evaporative self-assembly and alignment of semiconducting carbon nanotubes from organic solvents[J]. Langmuir, 2014, 30(12):3460-3466.
doi: 10.1021/la500162x pmid: 24580418 |
[27] |
He X., Gao W., Xie L. et al. Wafer-scale monodomain films of spontaneously aligned single-walled carbon nanotubes[J]. Nat. Nanotechnol., 2016, 11:633-638.
doi: 10.1038/nnano.2016.44 |
[28] |
Katherine R. Jinkins, Padma Gopalan, Michael S. Arnold, et al. Nanotube alignment mechanism in floating evaporative self-assembly[J]. Langmuir, 2017, 33:13407-13414.
doi: 10.1021/acs.langmuir.7b02827 pmid: 29058446 |
[29] |
Shi H., Ding L., Zhong D. et al. Radiofrequency transistors based on aligned carbon nanotube arrays[J]. Nat. Electron. 2021, 4:405-415.
doi: 10.1038/s41928-021-00594-w |
[30] |
Katherine R. Jinkins, Padma Gopalan, Michael S. Arnold, et al. Aligned 2D carbon nanotube liquid crystals for wafer-scale electronics[J]. Sci. Adv., 2021, 7:eabh0640.
doi: 10.1126/sciadv.abh0640 |
[31] |
Javey A., Guo J., Wang Q., Lundstrom M., and Dai H. J. Ballistic carbon nanotube fieldeffect transistors[J]. Nature, 2003, 424:654-657.
doi: 10.1038/nature01797 |
[32] | Javey A., Wang Q., Kim W., and Dai H. Advancements in complementary carbon nanotube field-effect transistors[J]. IEDM, 2003, 1269387. |
[33] |
Zhihong Chen, Phaedon Avouris et al. The role of metal-nanotube contact in the performance of carbon nanotube field-effect Ttransistors[J]. Nano Lett., 2005, 5(7):1497-1502.
pmid: 16178264 |
[34] |
Zhang Z, Liang X, Wang S, et al. Doping-free fabrication of carbon nanotube based ballistic CMOS devices and circuits[J]. Nano Lett, 2007, 7:3603-3607.
doi: 10.1021/nl0717107 |
[35] |
Zhiyong Zhang, Lianmao Peng et al. Almost Perfectly Symmetric SWCNT-Based CMOS Devices and Scaling[J]. ACS Nano., 2009, 3(11):3781-3787.
doi: 10.1021/nn901079p |
[36] |
Lee C. S.; Pop E.; Franklin A. D.; Haensch W.; Wong H. S. P. A compact virtual-source model for carbon nanotube FETs in the sub-10-nm regime—Part I: Intrinsic elements[J]. IEEE Trans. Electron Devices, 2015, 62:3061-3069.
doi: 10.1109/TED.2015.2457453 |
[37] |
Chenguang Qiu, Zhiyong Zhang, Lianmao Peng, et al. Scaling carbon nanotube complementary transistors to 5-nm gate lengths[J]. Science, 2017, 355:271-276.
doi: 10.1126/science.aaj1628 pmid: 28104886 |
[38] |
Aaron D, Franklin, Wilfried Haensch et al. Carbon Nanotube Complementary Wrap-Gate Transistors[J]. Nano Lett., 2013, 13:2490-2495.
doi: 10.1021/nl400544q pmid: 23638708 |
[39] |
Franklin A D, Chen Z. Length scaling of carbon nanotube transistors[J]. Nat. Nanotechnol., 2010, 5:858-862
doi: 10.1038/nnano.2010.220 pmid: 21102468 |
[40] |
Berger H. H. Models for contacts to planar devices[J]. Solid State Electron. 1972, 15:145-158.
doi: 10.1016/0038-1101(72)90048-2 |
[41] |
Solomon P. M. Contact resistance to a one-dimensional quasi-ballistic nanotube/wire[J]. IEEE Electron Device Lett., 2011, 32:246-248.
doi: 10.1109/LED.2010.2095821 |
[42] |
Gregory Pitner, H.-S. Philip Wong, et al. Low-tem-perature side contact to carbon nanotube transistors: resistance distributions down to 10 nm contact length[J]. Nano Lett., 2019, 19:1083-1089.
doi: 10.1021/acs.nanolett.8b04370 pmid: 30677297 |
[43] |
Cao Q.; Han S. J.; Haensch W. et al. End-bonded contacts for carbon nanotube transistors with low, size-independent resistance[J]. Science, 2015, 350:68-72.
doi: 10.1126/science.aac8006 |
[44] | Tang J. S., Cao Q., Han S. J. et al. Carbon nanotube complementary logic with low-temperature processed end-bonded metal contacts[J]. IEDM, 2016, 7838350. |
[45] |
Cao Q., Tersoff J., Han S. J. et al. Carbon nanotube tr-ansistors scaled to a 40-nanometer footprint[J]. Science, 2017, 356:1369-1372.
doi: 10.1126/science.aan2476 |
[46] |
Lu Y, Bangsaruntip S, Wang X, et al. DNA function-alization of carbon nanotubes for ultrathin atomic layer deposition of high κ dielectrics for nanotube transistors with 60 mV/Decade switching[J]. J. Am. Chem. Soc., 2006, 128:3518-3519.
doi: 10.1021/ja058836v |
[47] |
Wang Z, Xu H, Zhang Z, et al. Growth and performance of yttrium oxide as an ideal high-κ gate dielectric for carbon-based electronics[J]. Nano Lett., 2010, 10:2024-2030.
doi: 10.1021/nl100022u |
[48] | G. Pitner, Z. Zhang, Q. Lin, et al. Sub-0.5 nm Interfacial Dielectric Enables Superior Electrostatics: 65 mV/dec Top-Gated Carbon Nanotube FETs at 15 nm Gate Length[J]. IEDM 2020, 9371899. |
[49] |
Shulaker M M, Hills G, Patil N, et al. Carbon nanotube computer[J]. Nature, 2013, 501:526-530.
doi: 10.1038/nature12502 |
[50] |
Yang Y, Ding L, Peng LM, et al. High-Performance Complementary Transistors and Medium-Scale Integrated Circuits Based on Carbon Nanotube Thin Films[J]. ACS Nano, 2017, 11:4124-4132.
doi: 10.1021/acsnano.7b00861 |
[51] |
Hills G, Lau C, Max M, Shulaker, et al. Modern mic-roprocessor built from complementary carbon nanotube transistors[J]. Nature, 2019, 572:595-602.
doi: 10.1038/s41586-019-1493-8 |
[52] |
Bishop M. D.; Hills G; M.; Shulaker M. M. et al. Fabrication of carbon nanotube field-effect transistors in commercial silicon manufacturing facilities[J]. Nat. Electron., 2020, 3, 492-501.
doi: 10.1038/s41928-020-0419-7 |
[53] | Shulaker MM, Wong HSP, Mitra S, et al. Monolithic 3D integration of logic and memory: carbon nanotube FETs, resistive RAM, and silicon FETs[J]. IEDM, 2014, 7047120. |
[54] |
Shulaker M. M., Hills G., Wong H. S. P., et al. Threedi-mensional integration of nanotechnologies for computing and data storage on a single chip[J]. Nature, 2017, 547:74-78.
doi: 10.1038/nature22994 |
[55] |
Wu TF, Li H, Wong HSP, Shulaker MM, Mitra S. et al. Hyperdimensional Computing Exploiting Carbon Nano-tube FETs, Resistive RAM, and Their Monolithic 3D Integration[J]. IEEE J. Solid-State Circuits, 2018, 53:3183-3196.
doi: 10.1109/JSSC.2018.2870560 |
[56] | T Srimani, G Hills, C Lau, M Shulaker. Monolithic Three-Dimensional Imaging System: Carbon Nanotube Computing Circuitry Integrated Directly Over Silicon Imager[J]. VLSI, 2019, 8776514. |
[57] |
Zhong D., Zhang Z., Ding L. et al. Gigahertz integrated circuits based on carbon nanotube films[J]. Nat. Electron., 2018, 1:40-45.
doi: 10.1038/s41928-017-0003-y |
[58] | Tang J., Farmer D.B., Bangsaruntip S. et al. Contact engineering and channel doping for robust carbon nano-tube NFETs[J]. VLSI-TSA, 2017, 7942478. |
[59] |
Lau C., Srimani T., Bishop M. D., Hills G., Shulaker M. M. Tunable n-type doping of carbon nanotubes through engineered atomic layer deposition HfOx films[J]. ACS Nano, 2018, 12:10924-10931.
doi: 10.1021/acsnano.8b04208 |
[60] |
L. S. Liyanage, H.-S. Philip Wong, et al. VLSI-Compat-ible Carbon Nanotube Doping Technique with Low Work- Function Metal Oxides[J]. Nano Lett., 2014, 14(4):1884-1890.
doi: 10.1021/nl404654j |
[61] | H.-S. Philip Wong. The Next Technology for 21st Century Computing[J]. PKU CNT Workshop, 2017. |
[1] | 张睿,虞小鹏,程然,沈强,耿红艳,高大为,吴汉明. 集成电路先进制造技术进展与趋势[J]. 数据与计算发展前沿, 2021, 3(5): 28-39. |
[2] | 陈磊,赵聪鹏,葛婕,左璇. 全球集成电路技术与产业发展实践与创新发展趋势[J]. 数据与计算发展前沿, 2021, 3(5): 55-64. |
[3] | 余丽,盛莹婕,许景龙,隋秀峰. 专利分析视角下我国集成电路产业“卡脖子”问题研究[J]. 数据与计算发展前沿, 2021, 3(5): 40-54. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||