[1] |
陈纯, 庄越挺 . 大数据智能:从数据到知识与决策[J]. 中国科技财富, 2017,(8):48-49.
|
[2] |
Bose A J, Aarabi P. Adversarial attacks on face detectors using neural net based constrained optimization [C]// 2018 IEEE 20th International Workshop on Multimedia Signal Processing (MMSP). Vancouver, BC, Canada: IEEE, 2018: 1-6. [2019-09-08]. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8547128&isnumber=8547039.
|
[3] |
Chen L . Topological structure in visual perception[J]. Science, 1982,218(4573):699.
|
[4] |
Han S H, Chen L . The relationship between global properties and local properties-global precedence[J]. Adv Psychol Sci, 1996,4(1):36-41.
|
[5] |
Navon D . Forest before trees: the precedence of global features in visual perception[J]. Cognit Psychol, 1977,9(3):353-383.
|
[6] |
Pedrycz W. Granular computing: analysis and design of intelligent systems [M]. CRC Press, 2013.
|
[7] |
Wang G Y, Yang J, Xu J . Granular computing: from granularity optimization to multi-granularity joint problem solving[J]. Granular Computing, 2017,2(3):1-16.
|
[8] |
Yao Y Y . Granular computing: past, present, and future[M]. Rough Sets and Knowledge Technology. Springer Berlin Heidelberg, 2008.
|
[9] |
Zadeh L A . Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic[J]. Fuzzy Sets & Systems, 1997,90(2):111-127.
|
[10] |
Yao J T, Vasilakos A V, Pedrycz W . Granular computing: perspectives and challenges[J]. IEEE Transactions on Cybernetics, 2013,43(6):1977-1989.
|
[11] |
Bargiela A, Pedrycz W . Toward a theory of granular computing for human-centered information processing[J]. IEEE Transactions on Fuzzy Systems, 2008,16(2):320-330.
|
[12] |
Jankowski A, Skowron A . Toward rough-granular computing [C]// An A, Stefanowski J, Ramanna S, Butz C J, Pedrycz W, Wang G Y. International Workshop on Rough Sets, Fuzzy Sets, Data Mining, and Granular-Soft Computing. Springer, Berlin, Heidelberg. 2007: 1-12. [2019-09-08]. https://link.springer.com/chapter/10.1007/978-3-540-72530-5_1#citeas.
|
[13] |
张铃, 张钹 . 基于商空间的问题求解:粒度计算的理论基础 [M]. 清华大学出版社, 2014.
|
[14] |
Wille R . Restructuring lattice theory: an approach based on hierarchies of concepts [C]// Ferré S, Rudolph S. International Conference on Formal Concept Analysis. Springer, Berlin, Heidelberg. 2009: 314-339. [2019-09-08].https://link.springer.com/chapter/10.1007/978-3-642-01815-2_ 23# cite as.
|
[15] |
仇国芳, 马建敏, 杨宏志 , 等. 概念粒计算系统的数学模型[J]. 中国科学:信息科学, 2009,39(12):1239-1247.
|
[16] |
Yao Y Y . Three-way decisions and cognitive computing[J]. Cognitive Computation, 2016,8(4):543-554.
|
[17] |
Yao Y Y . A triarchic theory of granular computing[J]. Granular Computing, 2016,1(2):145-157.
|
[18] |
Wang G Y, Xu C L, Li D Y . Generic normal cloud model[J]. Information Sciences, 2014,280:1-15
|
[19] |
Wang G Y . DGCC: data-driven granular cognitive computing[J]. Granular Computing, 2017,2(4):343-355.
|
[20] |
Wang G Y . Data-driven granular cognitive computing[C]// Polkowski L, Yao Y Y, Artiemjew P, Ciucci D, Liu D, Slezak D, Zielosko B. International Joint Conference on Rough Sets. Springer, Cham, 2017: 13-24.[2019-09-08].https://link.springer.com/chapter/10.100 7%2F978-3-319-608 37-2_2.
|
[21] |
王国胤, 李帅, 杨洁 . 知识与数据双向驱动的多粒度认知计算[J]. 西北大学学报(自然科学版), 2018,48(04):488-500.
|
[22] |
于洪, 何德牛, 王国胤, 李劼, 谢永芳 . 大数据智能决策 [J/OL].自动化学报,2019-04-22. [2019-09-08]. https://doi.org/10.16383/j.aas.c180861.
|
[23] |
Yu H, Sun Z Y, Wang G Y, Li J, Xie Y F, Guo G. A multi-granular hierarchical evaluation model for multiple criteria three sorting [C]// Tong H H, Li Z H, Zhu F D, Yu J. 2018 IEEE International Conference on Data Mining Workshops (ICDMW 2018). Singapore: IEEE, 2018: 487-494.[2019-09-08]. http://ieeexplore.ieee.org/stamp/stamp. jsp?tp=&arnumber=8637440&isnumber=8637356.
|
[24] |
Yu H, Yang J S, Chen X F, Zou Z, Wang G Y, Sang T. Soft measuring model of superheat degree in the aluminum electrolysis production [C]// Abe N, Liu H. 2018 IEEE International Conference on Big Data (Big Data). Seattle, WA, USA: IEEE, 2018: 2679-2684.[2019-09-08]. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&a rnumber=8622489&isnumber=8621858.
|
[25] |
杨吉森, 于洪, 陈晓方, 邹忠 . 基于数据权重和规则可信度的过热度预测模型[J]. 中国自动化学会, 2017.
|
[26] |
郭英杰, 胡峰, 于洪, 张红亮 . 基于时间粒的铝电解过热度预测模型[J]. 南京大学学报(自然科学版), 2019,55(4):624-632.
|