[1] |
FANG C, CHUAN L I. Introduction to the Chinese Hα Solar Explorer (CHASE) Mission[J]. 空间科学学报, 2022, 42(4): 4.
|
[2] |
DENG Y Y, ZHANG H Y, YANG J F, et al. Design of the Full-disk Magneto Graph (FMG) onboard the ASO-S[J]. 天文和天体物理学研究: 英文版, 2019, 19(11): 12.
|
[3] |
GAN W, ZHU C, DENG Y, et al. Advanced Space-based Solar Observatory (ASO-S): an overview[J]. Research in Astronomy and Astrophysics, 2019, 19 (11): 5-12.
|
[4] |
贾正伟, 黄海松, 张松松. 基于彩色图像模板匹配的PCB多缺陷集中检测[J]. 组合机床与自动化加工技术, 2021(9): 125-129.
doi: 10.13462/j.cnki.mmtamt.2021.09.028
|
[5] |
彭茂庭. 基于模板匹配及神经网络的目标检测算法研究及应用[D]. 江苏: 南京航空航天大学, 2020.
|
[6] |
LIU J Q, XIE G Y, WANG J B, et al. Deep Industrial Image Anomaly Detection: A Survey[J]. Machine Intelligence Research, 2024, 21(1): 104-135.
|
[7] |
TAO Q, WANG Y, LIU X, et al. Anomaly Localization for Industrial Inspection: A Survey[J]. arXiv preprint arXiv:2207. 10298, 2022.
|
[8] |
GIGER A, CSILLAGHY A. Unsupervised Anoma-ly Detection With Variational Autoencoders App-lied to Full-Disk Solar Images[J]. Space Weather, 2024, 22(2): e2023SW003516.
|
[9] |
曹哲骁, 傅瑶, 王丽, 等. 基于深度学习网络的遥感图像异常检测方法研究[J]. 空间控制技术与应用, 2023, 49(6): 77-85.
|
[10] |
DEFARD T, SETKOV A, LOESCH A, et al. PaDiM: A Patch Distribution Modeling Frame-work for Anomaly Detection and Localization[C]. ICPR 2020 Workshops, 2021: 475-489.
|
[11] |
KARSTEN K, PEMULA L, ZEPEDA J, et al. Towards Total Recall in Industrial Anomaly Detection, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)[C]// New Orleans, LA, USA, 2022: 14298-14308.
|
[12] |
RUDOLPH M, WEHRBEIN T, ROSENHAHN B, et al. Fully Convolutional Cross-Scale-Flows for Image-based Defect Detection[C]//2022 IEEE/C-VF Winter Conference on Applications of Com-puter Vision (WACV), 2022: 1829-1838.
|
[13] |
SENER O, SAVARESE S. Active Learning for Convolutional Neural Networks: A Core-Set Approach[C]. In International Conference on Learning Representations, 2018: 1-13.
|
[14] |
SINHA S, ZHANG H, GOYAL A, et al. Small-GAN: Speeding Up GAN Training Using Core-sets[J]. Proceedings of the 37th International Conference on Machine Learning, 2019: 9005-9015.
|