[1] |
TAYLOR S R. Planetary science: a lunar perspective[M]. Houston, Tex: Lunar and Planetary Institute, 1982.
|
[2] |
WILSHIRE H G, STUART A L, JACKSON E D. Apollo 16 rocks: Petrology and classification[J]. Journal of Geophysical Research, 1973, 78(14): 2379-2392.
|
[3] |
TAYLOR G J. Ancient lunar crust: Origin, composition, and implications[J]. Elements, 2009, 5(1): 17-22.
|
[4] |
NEAL C R. Petrogenesis of mare basalts: A record of lunar volcanism[J]. Geochimica et Cosmochimica Acta, 1992, 56(6): 2177-2211.
|
[5] |
KIRK R L. The competition between thermal contraction and differentiation in the stress history of the Moon[J]. Journal of Geophysical Research: Solid Earth, 1989, 94(B9): 12133-12144.
|
[6] |
LUCEY P G, BLEWETT D T, JOLLIFF B L. Lunar iron and titanium abundance algorithms based on final processing of Clementine ultraviolet-visible images[J]. Journal of Geophysical Research: Planets, 2000, 105(E8): 20297-20305.
|
[7] |
CHEN J, LING Z C, LIU J Z, et al. Digital and global lithologic mapping of the Moon at a 1:2,500,000 scale[J]. Science Bulletin, 2022, 67(20): 2050-2054.
doi: 10.1016/j.scib.2022.09.015
pmid: 36546102
|
[8] |
VON ENGELHARDT W, STENGELIN R. Normative composition and classification of lunar igneous rocks and glasses, I: Lunar igneous rocks[J]. Earth and Planetary Science Letters, 1979, 42(2): 213-222.
|
[9] |
JIANG Y, ZHOU J, FENG J, TENG Q. Application of DBSCAN algorithm and mathematical morphology in rock thin section image segmentation[J]. Microcomputer Applications, 2016, 35: 39-41.
|
[10] |
吴继敏. 薄片显微描绘和自动图像分析技术在岩石学定量评价中的应用[J]. 矿物岩石, 1999(02): 26-31.
|
[11] |
SINGH N, SINGH T N, TIWARY A, SARKAR K M. Textural identification of basaltic rock mass using image processing and neural network[J]. Computational Geosciences, 2010, 14(2): 301-310.
|
[12] |
周程阳, 刘伟, 吴天润, 等. 基于混合专家模型的岩石薄片图像分类[J]. 吉林大学学报(理学版), 2024, 62(4): 905-914.
|
[13] |
程国建, 李碧, 万晓龙, 等. 基于SqueezeNet卷积神经网络的岩石薄片图像分类研究[J]. 矿物岩石, 2021, 41(4): 94-101.
|
[14] |
SU C, ZHU K Y. Research progress of intelligent image analysis for petrographic thin section images[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2023, 42(1): 13-25.
|
[15] |
ZONG K Q, WANG Z C, LI J W, et al. Bulk compositions of the Chang'E-5 lunar soil: Insights into chemical homogeneity, exotic addition, and origin of landing site basalts[J]. Geochimica et Cosmochimica Acta, 2022, 335: 284-296.
|
[16] |
XIA Z P, MIAO B K, CHEN H Y, et al. The petrology and mineralogy of lunar meteorite EET 96008 from Antarctica[J]. Advances in Polar Science, 2013, 25(4): 352-361.
|
[17] |
CARON M, TOUVRON H, MISRA I, et al. Emerging Properties in Self-Supervised Vision Transformers[C]// 2021 IEEE/CVF International Conference on Computer Vision (ICCV). Montreal, QC, Canada: IEEE, 2021: 9630-9640.
|
[18] |
NASA Johnson Space Center. Lunar Sample Compendium[DB/OL]. Houston: NASA Johnson Space Center. https://curator.jsc.nasa.gov/lunar/samplecatalog/.
|
[19] |
APOLLO 15 PRELIMINARY EXAMINATION TE- AM. The Apollo 15 lunar samples: A preliminary description[J]. Science, 1972, 175(4020): 363-375.
pmid: 17731350
|
[20] |
CHEN H, XIE L, SHU Q, MIAO B. Northwest Africa 12279: Evidence for the interaction between early lunar mantle melt and anorthositic crust[J]. Journal of Geophysical Research: Planets, 2023, 128: e2023 JE007844.
|
[21] |
DEER W A, HOWIE R A, ZUSSMAN J. An introduction to the rock-forming minerals[M]. 2nd ed. London: Mineralogical Society of Great Britain and Ireland, 2013.
|
[22] |
TATAR A, HAGHIGHI M, ZEINIJAHROMI A. Experiments on image data augmentation techniques for geological rock type classification with convolutional neural networks[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2025, 17(1): 106-125.
|
[23] |
GUI J, CHEN T, ZHANG J, et al. A survey on self-supervised learning: Algorithms, applications, and future trends[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46(12): 9052-9071.
|
[24] |
ABE M, NIIOKA H, MATSUMOTO A, et al. Self-supervised learning for feature extraction from glomerular images and disease classification with minimal annotations[J]. Journal of the American Society of Nephrology, 2025, 36(3): 471-486.
|
[25] |
BALESTRIERO R, IBRAHIM M, SOBAL V, et al. A Cookbook of Self-Supervised Learning[J]. arXiv preprint arXiv:2304.12210, 2023.
|
[26] |
HE K, ZHANG X, REN S, SUN J. Deep residual learning for image recognition[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778.
|
[27] |
VAN DER MAATEN L, HINTON G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9: 2579-2605.
|
[28] |
LIU H, HAOCHEN J Z, GAIDON A, et al. Self-supervised Learning is More Robust to Dataset Imbalance[C]// International Conference on Learning Representations, 2022.
|