数据与计算发展前沿 ›› 2025, Vol. 7 ›› Issue (4): 129-142.

CSTR: 32002.14.jfdc.CN10-1649/TP.2025.04.011

doi: 10.11871/jfdc.issn.2096-742X.2025.04.011

• 专刊:空间科学大数据智能算法模型与工具 • 上一篇    下一篇

面向标签稀缺场景的DINO特征迁移月球岩石薄片图像分类

戴旻昊1(),董俊烽2,陈剑2,吕英波2,张立1,*(),凌宗成2   

  1. 1.山东大学机电与信息工程学院山东 威海 264209
    2.山东大学空间科学与技术学院山东 威海 264209
  • 收稿日期:2025-04-29 出版日期:2025-08-20 发布日期:2025-08-21
  • 通讯作者: 张立
  • 作者简介:戴旻昊,山东大学,本科,目前就读于计算机科学与技术专业。
    本文负责本文初稿撰写、模型构建和开展实验。
    DAI Minhao, is currently pursuing the B.E. degree in Computer Science and Technology at the Shandong University.
    In this paper, he is responsible for drafting the paper, building the model and conducting the experiments.E-mail: 3221416220@qq.com|张立,山东大学,副教授。任国家深空探测遥感测绘工作委员会委员、山东宇航学会理事,近年来主要从事机器学习/深度学习在行星数据中应用等方面的教学与科研工作。
    本文负责制定研究计划,论文修改。
    ZHANG Li, is an associate professor at Shandong University. He is a member of the National Committee for Remote Sensing and Mapping of Deep Space Exploration, and council member of Shandong Society of Astronautics. In recent years, he has mainly been engaged in teaching and research work related to the application of machine learning and deep learning techniques to planetary data.
    In this paper, he is responsible for formulating the research plan and revising the manuscript.
    E-mail: zhangliwh@sdu.edu.cn
  • 基金资助:
    国家重点研发计划(2022YFF0711400);中国科学院国家空间科学中心开放课题(NSSDC2302001)

Lunar Rock Thin Section Image Classification in Label-Scarce Scenarios via DINO-Based Feature Transfer

DAI Minhao1(),DONG Junfeng2,CHEN Jian2,LYU Yingbo2,ZHANG Li1,*(),LING Zongcheng2   

  1. 1. School of Space Science and Technology, Shandong University, Weihai, Shandong 264209, China
    2. School of Mechanical, Electrical & Information Engineering, Shandong University, Weihai, Shandong 264209, China
  • Received:2025-04-29 Online:2025-08-20 Published:2025-08-21
  • Contact: ZHANG Li

摘要:

【应用背景】月球岩石薄片图像蕴含丰富的地质演化信息,但受限于样本稀缺、不均衡与高昂的标注成本,传统依赖监督学习的分类方法面临应用瓶颈。【方法】为此,本文提出一种基于DINO模型进行自监督对比学习,并将提取的特征搭配上不同分类器的图像特征提取与分类框架,旨在无标签条件下实现岩石图像的自动识别与分析。构建了月球岩石图像数据集,并以对比学习进行特征建模,结合多种分类器进行分类评估。【结果】实验结果显示,自监督模型提取的特征在KNN、MLP等分类器上表现优异,最高分类准确率从45.11%升至91.56%,并在样本数量差距较大的情况下未表现出类别不平衡问题。t-SNE可视化与混淆矩阵分析进一步证实了模型在特征聚类与类别判别方面的有效性。当前模型整体表现出良好的鲁棒性和泛化能力。【结论】本研究为月球岩石图像的自动化解译提供了一种可行路径,服务于月球地质演化研究和相关的深空探测任务。

关键词: 月球岩石, 岩石薄片图像, 自监督学习, 自动分类, DINO

Abstract:

[Background] Lunar rock thin-section images contain rich information about geological evolution. However, due to limited sample availability, dataset imbalance, and high annotation costs, traditional supervised learning-based classification methods face significant application challenges. [Methods] To address this, this paper proposes a self-supervised contrastive learning framework based on the DINO model, which extracts image features and integrates them with various classifiers to enable automatic recognition and analysis without requiring labeled data. A lunar rock image dataset was constructed, and contrastive learning was employed for feature modeling, followed by evaluation using multiple classifiers. [Results] Experimental results demonstrate that features extracted by the self-supervised model achieve outstanding performance with classifiers such as KNN and MLP, reaching a maximum classification accuracy of 91.56% from 45.11%, and it did not exhibit the problem of class imbalance even when the sample sizes were significantly different. The t-SNE visualization and confusion matrix analysis further confirm the model's effectiveness in feature clustering and category discrimination. The model exhibits strong robustness and generalization capabilities. [Conclusion] This study provides a feasible approach for automated interpretation of lunar rock images, supporting research on lunar geological evolution and related deep-space exploration missions.

Key words: lunar rocks, rock thin section images, self-supervised learning, automated classification, DINO