[1] |
CHRISTENSEN P, MCSWEEN H, BANDFIELD J, et al. Evidence for magmatic evolution and diversity on Mars from infrared observations[J]. Nature, 2005, 436(7050): 504-509.
|
[2] |
BIBRING J P, LANGEVIN Y, GENDRIN A, et al. Mars surface diversity as revealed by the OMEGA/Mars Express observations[J]. Science, 2005, 307(5715): 1576-1581.
|
[3] |
BIBRING J P, LANGEVIN Y, MUSTARD J F, et al. Global mineralogical and aqueous Mars history derived from OMEGA/Mars Express data[J]. Science, 2006, 312(5772): 400-404.
|
[4] |
ARVIDSON R, SEELOS IV F, DEAL K, et al. Mantled and exhumed terrains in Terra Meridiani, Mars[J]. Journal of Geophysical Research: Planets, 2003, 108(E12): 8073.
|
[5] |
ODY A, POULET F, BIBRING J P, et al. Global investigation of olivine on Mars: Insights into crust and mantle compositions[J]. Journal of Geophysical Research: Planets, 2013, 118(2): 234-262.
|
[6] |
KOEPPEN W C, HAMILTON V E. Global distribution, composition, and abundance of olivine on the surface of Mars from thermal infrared data[J]. Journal of Geophysical Research: Planets, 2008, 113(E5): 001.
|
[7] |
BUCZKOWSKI D L, MURCHIE S, CLARK R, et al. Investigation of an Argyre basin ring structure using Mars reconnaissance orbiter/compact reconnaissance imaging spectrometer for Mars[J]. Journal of Geophysical Research: Planets, 2010, 115(E12): 011.
|
[8] |
KOUTSOVITIS P, MAGGANAS A, NTAFLOS T, et al. Rodingitization and carbonation, associated with serpentinization of Triassic ultramafic cumulates and lavas in Othris, Greece[J]. Lithos, 2018, 320: 35-48.
|
[9] |
MUSTARD J F, MURCHIE S L, PELKEY S, et al. Hydrated silicate minerals on Mars observed by the Mars Reconnaissance Orbiter CRISM instrument[J]. Nature, 2008, 454(7202): 305-309.
|
[10] |
MEUNIER A, PETIT S, EHLMANN B L, et al. Magmatic precipitation as a possible origin of Noachian clays on Mars[J]. Nature Geoscience, 2012, 5(10): 739-743.
|
[11] |
CAWLEY J C, IRWIN III R P. Evolution of escarpments, pediments, and plains in the Noachian highlands of Mars[J]. Journal of Geophysical Research: Planets, 2018, 123(12): 3167-3187.
|
[12] |
CHRISTENSEN P R, BANDFIELD J, CLARK R, et al. Detection of crystalline hematite mineralization on Mars by the Thermal Emission Spectrometer: Evidence for near-surface water[J]. Journal of Geophysical Research: Planets, 2000, 105(E4): 9623-9642.
|
[13] |
CLARK B C, MORRIS R V, MCLENNAN S M, et al. Chemistry and mineralogy of outcrops at Meridiani Planum[J]. Earth and Planetary Science Letters, 2005, 240(1): 73-94.
|
[14] |
ZOLOTOV M Y, MIRONENKO M V. Chemical models for martian weathering profiles: Insights into formation of layered phyllosilicate and sulfate deposits[J]. Icarus, 2016, 275: 203-220.
|
[15] |
FLAHAUT J, CARTER J, POULET F, et al. Embedded clays and sulfates in Meridiani Planum, Mars[J]. Icarus, 2015, 248: 269-288.
|
[16] |
MILLIKEN R E, BISH D L. Sources and sinks of clay minerals on Mars[J]. Philosophical Magazine, 2010, 90(17-18): 2293-2308.
|
[17] |
WEITZ C M, MILLIKEN R, GRANT J A, et al. Mars Reconnaissance Orbiter observations of light-toned layered deposits and associated fluvial landforms on the plateaus adjacent to Valles Marineris[J]. Icarus, 2010, 205(1): 73-102.
|
[18] |
LORENZO A, GARCíA-VICENTE A, MORALES J, et al. Spectral response (VNIR-SWIR) associated with the octahedral sheet of smectites[J]. Environmental Sciences Proceedings, 2021, 6(1): 23.
|
[19] |
GHREFAT H, AL MUTAIRI Y, ELARABY H, et al. Using reflectance spectroscopy and Advanced Spaceborne Thermal Emission and Reflection Radiometer data to identify bauxite deposits in vicinity of Az Zabirah, northern Saudi Arabia[J]. Arabian Journal of Geosciences, 2021, 14(9): 820.
|
[20] |
FARRAND W H, GLOTCH T D, HORGAN B. Detection of copiapite in the northern Mawrth Vallis region of Mars: Evidence of acid sulfate alteration[J]. Icarus, 2014, 241: 346-357.
|
[21] |
FOX V, ARVIDSON R, GUINNESS E, et al. Smectite deposits in Marathon Valley, Endeavour Crater, Mars, identified using CRISM hyperspectral reflectance data[J]. Geophysical Research Letters, 2016, 43(10): 4885-4892.
|
[22] |
FARRAND W H, GLOTCH T D, RICE JR J W, et al. Discovery of jarosite within the Mawrth Vallis region of Mars: Implications for the geologic history of the region[J]. Icarus, 2009, 204(2): 478-488.
|
[23] |
LING Z, CAO F, NI Y, et al. Correlated analysis of chemical variations with spectroscopic features of the K-Na jarosite solid solutions relevant to Mars[J]. Icarus, 2016, 271: 19-29.
|
[24] |
LIU C, LING Z, ZHANG J, et al. Laboratory Raman and VNIR spectroscopic studies of jarosite and other secondary mineral mixtures relevant to Mars[J]. Journal of Raman Spectroscopy, 2020, 51(9): 1575-1588.
|
[25] |
HUGHES E, WRAY J, RIVERA-HERNáNDEZ F, et al. Raman and VNIR Spectra of Sri Lanka Serpentine Zone Minerals with Relevance to Nile Fossae and Jezero Crater, Mars[M]. 55th Lunar and Planetary Science Conference. 2024: 2303.
|
[26] |
LIU W P, YIN W, YE B L, et al. Reliable spectroscopic identification of minerals associated with serpentinization: Relevance to Mars exploration[J]. Icarus, 2023, 394: 115440.
|
[27] |
HONG D X, LIU C Z, LIN H L, et al. Near-infrared spectral characterization of the abyssal serpentinites and its implications for Martian exploration[J]. Lithos, 2025, 508-509: 108077.
|
[28] |
EHLMANN B L, MUSTARD J F, MURCHIE S L. Geologic setting of serpentine deposits on Mars[J]. Geophysical Research Letters, 2010, 37(6): 53-67.
|
[29] |
EMRAN A, TARNAS J D, STACK K M. Global Distribution of Serpentine on Mars[J]. Geophysical Research Letters, 2025, 52(2): e2024GL110630.
|
[30] |
TARNAS J, STACK K, PARENTE M, et al. Characteristics, origins, and biosignature preservation potential of carbonate-bearing rocks within and outside of Jezero crater[J]. Journal of Geophysical Research: Planets, 2021, 126(11): e2021JE006898.
|
[31] |
HARNER P L, GILMORE M S. Visible-near infrared spectra of hydrous carbonates, with implications for the detection of carbonates in hyperspectral data of Mars[J]. Icarus, 2015, 250: 204-214.
|
[32] |
EHLMANN B L, MUSTARD J F, MURCHIE S L, et al. Orbital Identification of Carbonate-Bearing Rocks on Mars[J]. Science, 2008, 322(5909): 1828-1832.
doi: 10.1126/science.1164759
pmid: 19095939
|
[33] |
HE Z, XU R, LI C, et al. Mars mineralogical spectrometer (MMS) on the Tianwen-1 mission[J]. Space Science Reviews, 2021, 217: 1-36.
|
[34] |
MURCHIE S, ARVIDSON R, BEDINI P, et al. Compact reconnaissance imaging spectrometer for Mars (CRISM) on Mars reconnaissance orbiter (MRO)[J]. Journal of Geophysical Research: Planets, 2007, 112(E5): S03.
|
[35] |
BIBRING J P, SOUFFLOT A, BERTHé M, et al. OMEGA: Observatoire pour la Minéralogie, l’Eau, les Glaces et l’Activité[M]. Mars Express: the scientific payload. City, 2004: 37-49.
|
[36] |
ODY A, POULET F, LANGEVIN Y, et al. Global maps of anhydrous minerals at the surface of Mars from OMEGA/MEx[J]. Journal of Geophysical Research: Planets, 2012, 117: E00J14
|
[37] |
FIGUERA R M, HUU B P, ROSSI A P, et al. Online characterization of planetary surfaces: PlanetServer, an open-source analysis and visualization tool[J]. Planetary Space Science, 2018, 150: 141-156.
|
[38] |
SARANATHAN A M, PARENTE M. Adversarial feature learning for improved mineral mapping of CRISM data[J]. Icarus, 2021, 355: 114107.
|
[39] |
AMADOR E S, BANDFIELD J L, THOMAS N H. A search for minerals associated with serpentinization across Mars using CRISM spectral data[J]. Icarus, 2018, 311: 113-134.
|
[40] |
PLEBANI E, EHLMANN B L, LEASK E K, et al. A machine learning toolkit for CRISM image analysis[J]. Icarus, 2022, 376: 114849.
|
[41] |
COMBE J P, LE MOUéLIC S, SOTIN C, et al. Analysis of OMEGA/Mars Express data hyperspectral data using a Multiple-Endmember Linear Spectral Unmixing Model (MELSUM): Methodology and first results[J]. Planetary and Space Science, 2008, 56(7): 951-975.
|
[42] |
MOUSSAOUI S, HAUKSDóTTIR H, SCHMIDT F, et al. On the decomposition of Mars hyperspectral data by ICA and Bayesian positive source separation[J]. Neurocomputing, 2008, 71(10): 2194-2208.
|
[43] |
LIN H, TARNAS J D, MUSTARD J F, et al. Dynamic aperture factor analysis/target transformation (DAFA/TT) for Mg-serpentine and Mg-carbonate mapping on Mars with CRISM near-infrared data[J]. Icarus, 2021, 355: 114168.
|
[44] |
BANDFIELD J L, CHRISTENSEN P R, SMITH M D. Spectral data set factor analysis and end-member recovery: Application to analysis of Martian atmospheric particulates[J]. Journal of Geophysical Research Planets, 2000, 105(E4): 9573-9587.
|
[45] |
VIVIANO-BECK C E, SEELOS F P, MURCHIE S L, et al. Revised CRISM spectral parameters and summary products based on the currently detected mineral diversity on Mars[J]. Journal of Geophysical Research: Planets, 2014, 119(6): 1403-1431.
|
[46] |
NOE DOBREA E, WRAY J, CALEF III F, et al. Hydrated minerals on Endeavour Crater’s rim and interior, and surrounding plains: New insights from CRISM data[J]. Geophysical Research Letters, 2012, 39(23): L23201.
|
[47] |
BELL J F, MORRIS R V, ADAMS J B. Thermally altered palagonitic tephra: A spectral and process analog to the soil and dust of Mars[J]. Journal of Geophysical Research: Planets, 1993, 98(E2): 3373-3385.
|
[48] |
MORRIS R V, GOLDEN D C, BELL J F, et al. Mineralogy, composition, and alteration of Mars Pathfinder rocks and soils: Evidence from multispectral, elemental, and magnetic data on terrestrial analogue, SNC meteorite, and Pathfinder samples[J]. Journal of Geophysical Research: Planets, 2000, 105(E1): 1757-1817.
|
[49] |
FARRAND W H, BELL J F, JOHNSON J R, et al. Spectral variability among rocks in visible and near-infrared multispectral Pancam data collected at Gusev crater: Examinations using spectral mixture analysis and related techniques[J]. Journal of Geophysical Research: Planets, 2006, 111(E2): S15.
|
[50] |
POULET F, GOMEZ C, BIBRING J P, et al. Martian surface mineralogy from Observatoire pour la Mineralogie, l’Eau, les Glaces et l’Activite on board the Mars Express spacecraft (OMEGA/MEx): Global mineral maps[J]. Journal of Geophysical Research: Planets, 2007, 112(E8): S02.
|
[51] |
BELL J F, MCSWEEN H Y, CRISP J A, et al. Mineralogic and compositional properties of Martian soil and dust: Results from Mars Pathfinder[J]. Journal of Geophysical Research: Planets, 2000, 105(E1): 1721-1755.
|