[1] |
涂传诒. 日地空间物理学[M]. 北京: 科学出版社, 1988.
|
[2] |
JACOBS J A, KATO Y, MATSUSHITA S, et al. Classification of geomagnetic micropulsations[J]. Journal of Geophysical Research, 1964, 69(1): 180-181.
|
[3] |
BALASIS G, DAGLIS I A, GEORGIOU M, et al. Magnetospheric ULF wave studies in the frame of Swarm mission: a time-frequency analysis tool for automated detection of pulsations in magnetic and electric field observations[J]. Earth, Planets and Space, 2013, 65: 1385-1398.
|
[4] |
KATAOKA R, MIYOSHI Y, MORIOKA A. Hilbert-Huang Transform of geomagnetic pulsations at auroral expansion onset[J]. Journal of Geophysical Research: Space Physics, 2009, 114(A9).
|
[5] |
BORTNIK J, CUTLER J W, DUNSON C, et al. An automatic wave detection algorithm applied to Pc1 pulsations[J]. Journal of Geophysical Research: Space Physics, 2007, 112(A4).
|
[6] |
BALASIS G, AMINALRAGIA G S, PAPADIMITRIOU C, et al. A machine learning approach for automated ULF wave recognition[J]. Journal of Space Weather and Space Climate, 2019, 9: A13.
|
[7] |
OMONDI S, YOSHIKAWA A, ZAHRA W K, et al. Automatic detection of auroral Pc5 geomagnetic pulsation using machine learning approach guided with discrete wavelet transform[J]. Advances in Space Research, 2023, 72(3): 866-883.
|
[8] |
ANTONOPOULOU A, BALASIS G, PAPADIMITRIOU C, et al. Convolutional neural networks for automated ULF wave classification in swarm time series[J]. Atmosphere, 2022, 13(9): 1488.
|
[9] |
RABIE E, HAFEZ A G, SAAD O M, et al. Geomagnetic micro-pulsation automatic detection via deep leaning approach guided with discrete wavelet transform[J]. Journal of King Saud University-Science, 2021, 33(1): 101263.
|
[10] |
秦佳媚, 钟鼎坤, 冯学尚, 等. 子午工程数据资源概述[J]. 中国科学数据, 2021, 6(2): 1-23.
|
[11] |
ZHANG Y, ZOU Z, FANG S. Identification Model of Pi2 Pulsation Based on One-dimensional Residual Convolutional Neural Network[J]. Chinese Journal of Space Science, 2025, 45(1): 66-81.
|
[12] |
HOWARD A G, ZHU M, CHEN B, et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications[J]. arXiv preprint arXiv:1704.04861, 2017.
|
[13] |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[J]. Advances in Neural Information Processing Systems, 2017, 30.
|
[14] |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]// Proceedings of the IEEE conference on computer vision and pattern recognition, 2016: 770-778.
|
[15] |
FOUMANI N M, TAN C W, WEBB G I, et al. Improving position encoding of transformers for multivariate time series classification[J]. Data Mining and knowledge Discovery, 2024, 38(1): 22-48.
|
[16] |
HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
doi: 10.1162/neco.1997.9.8.1735
pmid: 9377276
|
[17] |
CHO K, VAN M B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[J]. arXiv preprint arXiv:1406.1078, 2014.
|
[18] |
ISMAIL F H, FORESTIER G, WEBER J, et al. Deep learning for time series classification: a review[J]. Data Mining and Know-ledge Discovery, 2019, 33(4): 917-963.
|
[19] |
PASZKE A, GROSS S, MASSA F, et al. Pytorch: An imperative style, high-performance deep learning library[J]. Advances in Neural Information Processing Systems, 2019, 32.
|