[1] |
LIN Q, WANG Y. Spatial and temporal analysis of a fatal landslide inventory in China from 1950 to 2016[J]. Landslides, 2018, 15(12): 2357-2372.
|
[2] |
陶伟, 孙岳. 基于GIS滑坡地质灾害易发性评价方法综述[J]. 世界有色金属, 2020, 561(21): 157-159.
|
[3] |
POURGHASEMI H R, TEIMOORI YANSARI Z, PANAGOS P, et al. Analysis and evaluation of landslide susceptibility: a review on articles published during 2005—2016 (periods of 2005—2012 and 2013—2016)[J]. Arabian Journal of Geosciences, 2018, 11(9): 1-12.
|
[4] |
WANG D, HAO M, CHEN S, et al. Assessment of landslide susceptibility and risk factors in China[J]. Natural hazards, 2021, 108(3): 3045-3059.
|
[5] |
GAPRINDASHVILI G, VAN WESTEN C J. Generation of a national landslide hazard and risk map for the country of Georgia[J]. Natural hazards, 2016, 80(1): 69-101.
|
[6] |
SAROGLOU C. GIS-based rockfall susceptibility zoning in Greece[J]. Geosciences, 2019, 9(4): 163.
|
[7] |
TITTI G, BORGATTI L, ZOU Q, et al. Landslide susceptibility in the Belt and Road Countries: continental step of a multi-scale approach[J]. Environmental Earth Sciences, 2021, 80(18): 1-18.
|
[8] |
BROECKX J, VANMAERCKE M, DUCHATEAU R, et al. A data-based landslide susceptibility map of Africa[J]. Earth-Science Reviews, 2018, 185: 102-121.
|
[9] |
GüNTHER A, REICHENBACH P, MALET J P, et al. Tier-based approaches for landslide susceptibility assessment in Europe[J]. Landslides, 2013, 10(5): 529-546.
|
[10] |
LIN L, LIN Q, WANG Y. Landslide susceptibility mapping on a global scale using the method of logistic regression[J]. Natural Hazards and Earth System Sciences, 2017, 17(8): 1411-1424.
|
[11] |
HONG Y, ADLER R, HUFFMAN G. Use of satellite remote sensing data in the mapping of global landslide susceptibility[J]. Natural hazards, 2007, 43(2): 245-256.
|
[12] |
COROMINAS J, VAN WESTEN C, FRATTINI P, et al. Recommendations for the quantitative analysis of landslide risk[J]. Bulletin of engineering geology and the environment, 2014, 73(2): 209-263.
|
[13] |
周宇, 常鸣, 孙文静, 等. 基于改进证据权重法的北海道地震同震滑坡易发性评价[J]. 地理与地理信息科学, 2022, 38(1): 138-144.
|
[14] |
李郎平, 兰恒星, 郭长宝, 等. 基于改进频率比法的川藏铁路沿线及邻区地质灾害易发性分区评价[J]. 现代地质, 2017, 31(5): 911-929.
|
[15] |
罗金. 基于各类机器学习方法的滑坡易发性评价及软件系统开发[D]. 西安: 长安大学, 2021.
|
[16] |
侯鹏鹂. 岷江上游区域泥石流发育规律与易发性评价[D]. 绵阳: 西南科技大学, 2022.
|
[17] |
GOETZ J, BRENNING A, PETSCHKO H, et al. Evaluating machine learning and statistical prediction techniques for landslide susceptibility modeling[J]. Computers & geosciences, 2015, 81: 1-11.
|
[18] |
陈芯宇, 师芸, 温永啸, 等. 基于确定性系数与支持向量机的滑坡易发性评价[J]. 科学技术与工程, 2023, 23(2): 518-527.
|
[19] |
艾骁. 基于机器学习的地震滑坡易发性评估模型构建[D]. 哈尔滨: 中国地震局工程力学研究所, 2021.
|
[20] |
万洋, 郭捷, 马凤山, 等. 基于最大熵模型的中尼交通廊道滑坡易发性分析[J]. 中国地质灾害与防治学报, 2022, 33(2): 88-95.
|
[21] |
邵健. 基于机器学习的滑坡敏感性评价研究[D]. 贵阳: 贵州大学, 2022.
|
[22] |
张越, 宋炜炜. 基于BP神经网络和决策树的昆明市东川区滑坡空间易发性评价[J]. 国土与自然资源研究, 2023, 203(2): 67-70.
|
[23] |
段宇英, 汤军, 刘远刚, 等. 基于随机森林的山西省柳林县黄土滑坡空间敏感性评价[J]. 地理科学, 2022, 42(2): 343-351.
doi: 10.13249/j.cnki.sgs.2022.02.016
|
[24] |
HARP E L, KEEFER D K, SATO H P, et al. Landslide inventories: the essential part of seismic landslide hazard analyses[J]. Engineering Geology, 2011, 122(1-2): 9-21.
|
[25] |
STEGER S, MAIR V, KOFLER C, et al. Correlation does not imply geomorphic causation in data-driven landslide susceptibility modelling-Benefits of exploring landslide data collection effects[J]. Science of the total environment, 2021, 776: 145935.
|
[26] |
KIRSCHBAUM D, STANLEY T, ZHOU Y. Spatial and temporal analysis of a global landslide catalog[J]. Geomorphology, 2015, 249: 4-15.
|
[27] |
STEGER S, SCHMALTZ E, GLADE T. The (f) utility to account for pre-failure topography in data-driven landslide susceptibility modelling[J]. Geomorphology, 2020, 354: 107041.
|
[28] |
STEGER S, BRENNING A, BELL R, et al. Exploring discrepancies between quantitative validation results and the geomorphic plausibility of statistical landslide susceptibility maps[J]. Geomorphology, 2016, 262: 8-23.
|
[29] |
LIMA P, STEGER S, GLADE T. Counteracting flawed landslide data in statistically based landslide susceptibility modelling for very large areas: a national-scale assessment for Austria[J]. Landslides, 2021, 18(11): 3531-3546.
|
[30] |
STEGER S, MAIR V, KOFLER C, et al. The necessity to consider the landslide data origin in statistically-based spatial predictive modelling-A landslide intervention index for South Tyrol (Italy)[C]. EGU General Assembly Conference Abstracts, 2020: 3440.
|
[31] |
STEGER S, BRENNING A, BELL R, et al. The influence of systematically incomplete shallow landslide inventories on statistical susceptibility models and suggestions for improvements[J]. Landslides, 2017, 14: 1767-1781.
|
[32] |
DINGEMANSE N J, DOCHTERMANN N A. Quantifying individual variation in behaviour: mixed-effect modelling approaches[J]. Journal of Animal Ecology, 2013, 82(1): 39-54.
doi: 10.1111/1365-2656.12013
pmid: 23171297
|
[33] |
SIGRIST F. Gaussian process boosting[J]. arXiv preprint arXiv:200402653, 2020.
|
[34] |
杨迁, 王雁林, 马园园. 2001—2019年中国地质灾害分布规律及引发因素分析[J]. 地质灾害与环境保护, 2020, 31(4): 43-48.
|
[35] |
REICHENBACH P, ROSSI M, MALAMUD B, et al. A review of statistically-based landslide susceptibility models[J]. Earth-Science Reviews, 2018: S001282 5217305652.
|
[36] |
PELLICANI R, VAN WESTEN C J, SPILOTRO G. Assessing landslide exposure in areas with limited landslide information[J]. Landslides, 2014, 11(3): 463-480.
|
[37] |
LIN Q, LIMA P, STEGER S, et al. National-scale data-driven rainfall induced landslide susceptibility mapping for China by accounting for incomplete landslide data[J]. Geoscience Frontiers, 2021, 12(6): 101248.
|
[38] |
YANG Y, YANG J, XU C, et al. Local-scale landslide susceptibility mapping using the B-GeoSVC model[J]. Landslides, 2019, 16(7): 1301-1312.
doi: 10.1007/s10346-019-01174-y
|
[39] |
LUO W, LIU C C. Innovative landslide susceptibility mapping supported by geomorphon and geographical detector methods[J]. Landslides, 2018, 15(3): 465-474.
|
[40] |
汪潮. 滇西地区花岗岩风化层滑坡的形成条件及防治对策研究[D]. 昆明: 昆明理工大学, 2016.
|
[41] |
POURGHASEMI H R, ROSSI M. Landslide susceptibility modeling in a landslide prone area in Mazandarn Province, north of Iran: a comparison between GLM, GAM, MARS, and M-AHP methods[J]. Theoretical and Applied Climatology, 2017, 130(1): 609-633.
|
[42] |
周玉龙. 融入时序InSAR形变的毛尔盖库区滑坡易发性评价研究[D]. 成都: 成都理工大学, 2020.
|
[43] |
FARR T G, KOBRICK M. Shuttle Radar Topography Mission produces a wealth of data[J]. Eos, Transactions American Geophysical Union, 2000, 81(48): 583-585.
|
[44] |
周鑫. 河南省渑池县地质灾害发育特征及形成条件研究[J]. 华北自然资源, 2020, 96(3): 107-109.
|
[45] |
白志刚, 刘启蒙, 刘瑜. 基于熵指数与随机森林模型的滑坡易发性评价[J]. 人民长江, 2022, 53(10): 95-102.
|
[46] |
蒋万钰. 基于贝叶斯概率的降雨数据稀缺山区滑坡预警模型研究[D]. 兰州: 兰州大学, 2022.
|
[47] |
TRABUCCO A, ZOMER R. Global High-Resolution Soil-Water Balance[J]. Figshare Fileset, 2019, 10: m9.
|
[48] |
HARTMANN J, MOOSDORF N. The new global lithological map database GLiM: A representation of rock properties at the Earth surface[J]. Geochemistry, Geophysics, Geosystems, 2012, 13(12): 1-37.
|
[49] |
DU J, GLADE T, WOLDAI T, et al. Landslide susceptibility assessment based on an incomplete landslide inventory in the Jilong Valley, Tibet, Chinese Himalayas[J]. Engineering Geology, 2020, 270: 105572.
|
[50] |
SUN D, SHI S, WEN H, et al. A hybrid optimization method of factor screening predicated on GeoDetector and Random Forest for Landslide Susceptibility Mapping[J]. Geomorphology, 2021, 379: 107623.
|
[51] |
KE G, MENG Q, FINLEY T, et al. Lightgbm: A highly efficient gradient boosting decision tree[J]. Advances in neural information processing systems, 2017: 3149-3157.
|
[52] |
赵泽园, 罗菲. 基于LightGBM模型的区域滑坡危险性评价研究[J]. 内蒙古煤炭经济, 2020, 298(5): 48-49.
|
[53] |
SZKLO M, NIETO F J. Epidemiology: beyond the basics[M]. American Journal of Epidemiology, 2001, 153(8): 821-822.
|
[54] |
SIGRIST F. Latent Gaussian model boosting[J]. arXiv preprint arXiv:210508966, 2021.
|
[55] |
BRENNING A. Spatial cross-validation and bootstrap for the assessment of prediction rules in remote sensing: The R package sperrorest[C]. proceedings of the 2012 IEEE international geoscience and remote sensing symposium, 2012: 5362-5375.
|
[56] |
BUITINCK L, LOUPPE G, BLONDEL M, et al. API design for machine learning software: experiences from the scikit-learn project[J]. arXiv preprint arXiv:13090238, 2013.
|
[57] |
王伟, 袁雯宇, 邹丽芳, 等. 基于滑坡敏感性评价的库区水动力型滑坡区域综合预警研究[J]. 岩石力学与工程学报, 2022, 41(3): 479-491.
|
[58] |
MANDAL K, SAHA S, MANDAL S. Applying deep learning and benchmark machine learning algorithms for landslide susceptibility modelling in Rorachu river basin of Sikkim Himalaya, India[J]. Geoscience Frontiers, 2021, 12(5): 101203.
|
[59] |
KORUP O, STOLLE A. Landslide prediction from machine learning[J]. Geology today, 2014, 30(1): 26-33.
|
[60] |
CHEN W, CHAI H, SUN X, et al. A GIS-based comparative study of frequency ratio, statistical index and weights-of-evidence models in landslide susceptibility mapping[J]. Arabian Journal of Geosciences, 2016, 9(3): 1-16.
|
[61] |
PETSCHKO H, BELL R, GLADE T. Effectiveness of visually analyzing LiDAR DTM derivatives for earth and debris slide inventory mapping for statistical susceptibility modeling[J]. Landslides, 2016, 13(5): 857-872.
|
[62] |
PETSCHKO H, BRENNING A, BELL R, et al. Assessing the quality of landslide susceptibility maps-case study Lower Austria[J]. Natural Hazards and Earth System Sciences, 2014, 14(1): 95-118.
|
[63] |
STEGER S, BRENNING A, BELL R, et al. The propagation of inventory-based positional errors into statistical landslide susceptibility models[J]. Natural Hazards and Earth System Sciences, 2016, 16(12): 2729-2745.
|
[64] |
YOUSSEF A M, POURGHASEMI H R. Landslide susceptibility mapping using machine learning algorithms and comparison of their performance at Abha Basin, Asir Region, Saudi Arabia[J]. Geoscience Frontiers, 2021, 12(2): 639-655.
|
[65] |
LIU L, LI S, LI X, et al. An integrated approach for landslide susceptibility mapping by considering spatial correlation and fractal distribution of clustered landslide data[J]. Landslides, 2019, 16(4): 715-728.
|