| [1] |
SUN J. Convective-scale assimilation of radar data: progress and challenges[J]. Quarterly Journal of the Royal Meteorological Society, 2005, 131(613): 3439-3463.
|
| [2] |
SEO D J, SMITH J A. Radar-based short-term rainfall prediction[J]. Journal of Hydrology, 1992, 131(1-4):341-367.
|
| [3] |
LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. nature, 2015, 521(7553): 436-444.
|
| [4] |
许小峰. 从物理模型到智能分析——降低天气预报不确定性的新探索[J]. 气象, 2018, 3 (3): 341-350.
|
| [5] |
LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
|
| [6] |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]// IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
|
| [7] |
MEDSKER L R, JAIN L, et al. Recurrent neural networks[J]. Design and Applications, 2001, 5(64-67): 2.
|
| [8] |
韩丰, 龙明盛, 李月安, 等. 循环神经网络在雷达临近预报中的应用[J]. 应用气象学报, 2019, 30(1): 61-69.
|
| [9] |
HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural computation, 1997, 9(8):1735-1780.
doi: 10.1162/neco.1997.9.8.1735
pmid: 9377276
|
| [10] |
CHUNG J, GULCEHRE C, CHO K, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[J]. arXiv preprint arXiv:1412.3555, 2014.
|
| [11] |
WANG Y, LONG M, WANG J, et al. Predrnn: Recurrent neural networks for predictive learning using spatiotemporal lstms[C]// Advances in neural information processing systems, 2017, 30: 879-888.
|
| [12] |
SØNDERBY C K, ESPEHOLT L, HEEK J, et al. Metnet: A neural weather model for precipitation forecasting[J]. arXiv preprint arXiv:2003.12140, 2020.
|
| [13] |
SHI X, GAO Z, LAUSEN L, et al. Deep learning for precipitation nowcasting: A benchmark and a new model[C]// Advances in neural information processing systems, 2017, 30: 5617-5627.
|
| [14] |
SIAM M, VALIPOUR S, JAGERSAND M, et al. Convolutional gated recurrent networks for video segmentation[C]// IEEE international conference on image processing (ICIP), 2017: 3090-3094.
|
| [15] |
XIONG A, LIU N, LIU Y, et al. QpefBD: a benchmark dataset applied to machine learning for minute-scale quantitative precipitation estimation and forecasting[J]. Journal of Meteorological Research, 2022, 36(1): 93-106.
|
| [16] |
丁金才. 天气预报评分方法评述[J]. 南京气象学院学报, 1995, 18(1): 143-150.
|
| [17] |
唐文苑, 周庆亮, 刘鑫华, 等. 国家级强对流天气分类预报检验分析[J]. 气象, 2017, 43(1): 67-76.
|
| [18] |
LI S, ZHAO Y, VARMA R, et al. Pytorch distributed: Experiences on accelerating data parallel training[J]. arXiv preprint arXiv:2006.15704, 2020.
|
| [19] |
MICIKEVICIUS P, NARANG S, ALBEN J, et al. Mixed precision training[J]. arXiv preprint arXiv:1710.03740, 2017.
|
| [20] |
刘娜, 熊安元, 张强, 等. 强对流天气人工智能应用训练基础数据集构建[J]. 应用气象学报, 2021, 32(5): 530-541.
|
| [21] |
VAN DER WALT S, COLBERT S C, VAROQUAUX G. The numpy array: a structure for efficient numerical computation[J]. Computing in science & engineering, 2011, 13(2): 22-30.
|
| [22] |
PASZKE A, GROSS S, MASSA F, et al. Pytorch: An imperative style, high-performance deep learning library[C]// Advances in neural information processing systems, 2019, 32: 8024-8035.
|
| [23] |
https://nvidia.github.io/apex/[EB/OL].
|
| [24] |
WOO W C, WONG W K. Operational application of optical flow techniques to radar-based rainfall nowcasting[J]. Atmosphere, 2017, 8(3): 48.
|
| [25] |
https://www.nvidia.cn/data-center/tesla-p100/[EB/OL].
|
| [26] |
https://www.nvidia.cn/data-center/v100/[EB/OL].
|
| [27] |
SERGEEV A, DEL BALSO M. Horovod: fast and easy distributed deep learning in tensorflow[J]. arXiv preprint arXiv:1802.05799, 2018.
|