Frontiers of Data and Computing ›› 2024, Vol. 6 ›› Issue (6): 19-31.
CSTR: 32002.14.jfdc.CN10-1649/TP.2024.06.003
doi: 10.11871/jfdc.issn.2096-742X.2024.06.003
Previous Articles Next Articles
Received:
2023-12-28
Online:
2024-12-20
Published:
2024-12-20
Contact:
LU Chenghao
E-mail:lch0517@foxmail.com
LU Chenghao,CHEN Xiuhong. IPDFF: Reconstructed Surface Network Based on Implicit Partition Learning Deep Feature Fusion[J]. Frontiers of Data and Computing, 2024, 6(6): 19-31, https://cstr.cn/32002.14.jfdc.CN10-1649/TP.2024.06.003.
Table 1
Comparison of Faust dataset reconstruction indicators"
Gauss | SALD | DC-DFFN | IPDFF | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
L1CD | F-Score | L1CD | F-Score | L1CD | F-Score | L1CD | F-Score | ||||
Model1 | 6.514e-5 | 0.798 | 1.980e-4 | 0.615 | 6.275e-5 | 0.787 | 2.416e-5 | 0.885 | |||
Model2 | 6.238e-5 | 0.791 | 4.620e-5 | 0.828 | 3.156e-5 | 0.826 | 1.903e-5 | 0.909 | |||
Model3 | 8.518e-5 | 0.807 | 8.165e-5 | 0.778 | 6.579e-5 | 0.809 | 4.392e-5 | 0.886 | |||
Model4 | 8.166e-5 | 0.814 | 8.238e-5 | 0.829 | 3.166e-5 | 0.862 | 2.829e-5 | 0.891 | |||
Model5 | 6.522e-5 | 0.782 | 4.986e-5 | 0.840 | 2.922e-5 | 0.852 | 2.132e-5 | 0.900 | |||
Model6 | 6.522e-5 | 0.799 | 5.683e-5 | 0.821 | 3.371e-5 | 0.880 | 2.013e-5 | 0.913 | |||
Model7 | 5.396e-5 | 0.786 | 6.708e-5 | 0.809 | 3.697e-5 | 0.865 | 2.503e-5 | 0.888 | |||
Model8 | 8.708e-5 | 0.817 | 5.409e-5 | 0.825 | 4.567e-5 | 0.863 | 2.659e-5 | 0.897 | |||
Model9 | 6.086e-5 | 0.784 | 4.185e-5 | 0.842 | 3.376e-5 | 0.856 | 2.150e-5 | 0.898 | |||
Model10 | 9.619e-5 | 0.825 | 6.077e-5 | 0.819 | 4.192e-5 | 0.842 | 2.980e-5 | 0.904 |
[1] | ARENS C. The Bowyer-Watson algorithm[J]. An efficient Implementation in a Database Environment, 2002: 5-9. |
[2] | AURENHAMMER F, KLEIN R. Voronoi Diagrams[J]. Handbook of Computational Geometry, 2000, 5(10): 201-290. |
[3] | RAKOTOSAONA M J, GUERRERO P, AIGERMAN N, et al. Learning delaunay surface elements for mesh reconstruction[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021: 22-31. |
[4] | LUO Y, MI Z, TAO W. Deepdt: Learning geometry from delaunay triangulation for surface reconstruction[C]// Proceedings of the AAAI Conference on Artificial Intelligence. 2021, 35(3): 2277-2285. |
[5] | ZHANG Y, LIU Y, ZHANG H, et al. Multimodal remote sensing image matching combining learning features and Delaunay triangulation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-17. |
[6] | MENG W, BO P, ZHANG X, et al. An efficient algorithm for approximate Voronoi diagram construction on triangulated surfaces[J]. Computational Visual Media, 2023, 9(3): 443-459. |
[7] | WANG L, HAN J, LU S, et al. Rapid reconstruction of point cloud implicit surface[J]. Laser & Optoelectronics Progress, 2021, 58(4): 0415003. |
[8] | FUSCHLER M A, BOLLES R C. Random Consensus: A paradigm for model fitting with applications to image analysis and automated cartigraphy[J]. Communications of the ACM, 1981, 24(6): 381-395. |
[9] | CUN X, WANG X G. Research and application of moving least square surface fitting subpixel displacement algorithm[J]. Computer Application Research, 2020, 37(S2): 330-332. |
[10] | TAMILMATHI A, CHITHRA P L. Tensor block-wise singular value decomposition for 3D point cloud compression[J]. Multimedia Tools and Applications, 2022, 81(26): 37917-37938. |
[11] | MA B, LIU Y, HAN Z. Reconstructing surfaces for sparse point clouds with On-Surface Priors[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022: 6305-6315. |
[12] | KAZHDAN M, BOLITHO M, HOPPE H. Poisson surface reconstruction[C]// Proceedings of the fourth Eurographics Symposium on Geometry processing, 2006, 7(4). |
[13] | KAZHDAN M, HOPPE H. Screened poisson surface reconstruction[J]. Acm Transactions on Graphics, 2013, 32(3): 1-13. |
[14] | ESTELLERS V, SCOTT M, TEW K, et al. Robust poisson surface reconstruction[C]// Scale Space and Variational Methods in Computer Vision:5th International Conference, SSVM 2015, Lège-Cap Ferret, France, May 31-June 4, 2015, Proceedings 5. Springer International Publishing, 2015: 525-537. |
[15] | HOU F, WANG C, WANG W, et al. Iterative Poisson surface reconstruction (IPSR) for unoriented points[J]. ACM Transactions on Graphics, 2022, 41(4):1-13. |
[16] | PREINER R, BOUBEKEUR T, WIMMER M. Gaussian-product subdivision surfaces[J]. ACM Tran-sactions on Graphics (TOG), 2019, 38(4): 1-11. |
[17] | LIN S, XIAO D, SHI Z, et al. Surface reconstruction from point clouds without normals by parametrizing the gauss formula[J]. ACM Transactions on Graphics, 2022, 42(2): 1-19. |
[18] | PARK J J, FLORENCE P, STRAUB J, et al. DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019: 165-174. |
[19] | ATZMON M, LIPMAN Y. SALD: Sign Agnostic Learning with Derivatives[C]// International Conference on Learning Representations, 2020. |
[20] | MI Z, LUO Y, TAO W. Ssrnet: Scalable 3d surface reconstruction network[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 970-979. |
[21] | SITZMANN V, MARTEL J, BERGMAN A, et al. Implicit neural representations with periodic activation functions[J]. Advances in neural information processing systems, 2020, 33: 7462-7473. |
[22] | BASHER A, BOUTELLIER J. DC-DFFN: Densely connected deep feature fusion network with sign agnostic learning for implicit shape representation[J]. IEEE Access, 2023, 11: 46399-46412. |
[23] | YAVARTANOO M, CHUNG J, NESHATAVAR R, et al. 3dias: 3d shape reconstruction with implicit algebraic surfaces. In Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021:12446-12455. |
[24] | CHEN C, LIU Y, HAN Z. Latent partition implicit with surface codes for 3d representation[C]// European Conference on Computer Vision. Cham: Springer Nature Switzerland, 2022: 322-343. |
[25] | QI C, SU H, MO K, et al. Pointnet: Deep learning on point sets for 3d classification and segmentation[C]// Proceedings of the IEEE conference on computer vision and pattern recognition, 2017: 652-660. |
[26] | HU P, HO E, MUNTEANU A. 3DBodyNet: fast reconstruction of 3D animatable human body shape from a single commodity depth camera[J]. IEEE Transactions on Multimedia, 2021, 24: 2139-2149. |
[27] | DING C, ZHANG L, CHEN H, et al. Sparsity-based Human Activity Recognition with PointNet using a Portable FMCW Radar[J]. IEEE Internet of Things Journal, 2023, 10(11): 10024-10037. |
[28] | MILDENHALL B, SRINIVASAN P, TANCIK M, et al. Nerf: Representing scenes as neural radiance fields for view synthesis[J]. Communications of the ACM, 2021, 65(1): 99-106. |
[29] | RAN Y, ZENG J, HE S, et al. NeurAR: Neural Uncertainty for Autonomous 3D Reconstruction With Implicit Neural Representations[J]. IEEE Robotics and Automation Letters, 2023, 8(2): 1125-1132. |
[30] | PARK J J, FLORENCE P, STRAUB J, et al. Deepsdf: Learning continuous signed distance functions for shape representation[C]// Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2019: 165-174. |
[31] | ZHANG R, GUO Z, GAO P, et al. Point-m2ae: multi-scale masked autoencoders for hierarchical point cloud pre-training[J]. Advances in neural information processing systems, 2022, 35: 27061-27074. |
[32] | CAI X, CAO Y, REN Y, et al. Multi-objective evolutionary 3D face reconstruction based on improved encoder-decoder network[J]. Information Sciences, 2021, 581: 233-248. |
[33] | SAYED M, GIBSON J, WATSON J, et al. SimpleRecon: 3D reconstruction without 3D convolutions[C]// European Conference on Computer Vision. Cham: Springer Nature Switzerland, 2022: 1-19. |
[34] | MILDENHALL B, SRINIVASAN P P, TANCIK M, et al. Nerf: Representing scenes as neural radiance fields for view synthesis[J]. Communications of the ACM, 2021, 65(1): 99-106. |
[35] | WU C Y, JOHNSON J, MALIK J, et al. Multiview compressive coding for 3D reconstruction[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023: 9065-9075. |
[36] | MAZZACCA G, KARAMI A, RIGON S, et al. NeRF for heritage 3D reconstruction[J]. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2023, 48( M-2-2023): 1051-1058. |
[37] | QI C R, SU H, MO K, et al. Pointnet: Deep learning on point sets for 3d classification and segmentation[C]// Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 652-660. |
[38] | QI C R, YI L, SU H, et al. Pointnet++: Deep hierarchical feature learning on point sets in a metric space[J]. Advances in neural information processing systems, 2017, 30. |
[39] | WANG Q, LEI H, QIAN W. Siamese PointNet: 3D Head Pose Estimation with Local Feature Descriptor[J]. Electronics, 2023, 12(5): 1194. |
[40] | HUANG G, LIU Z, MAATEN L, et al. Densely connected convolutional networks[C]// Proceedings of the IEEE conference on computer vision and pattern recognition, 2017: 4700-4708. |
[41] | ZHANG H, PATEL V. Densely connected pyramid dehazing network[C]// Proceedings of the IEEE conference on computer vision and pattern recognition, 2018: 3194-3203. |
[42] | PANDEY A, WANG D L. Densely connected neural network with dilated convolutions for real-time speech enhancement in the time domain[C]// ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2020: 6629-6633. |
[43] | ZHANG F, FANG J, WAH B, et al. Deep fusionnet for point cloud semantic segmentation[C]// Computer Vision-ECCV 2020: 16th European Conference, Gla-sgow, UK, August 23-28, 2020, Proceedings, Part XXIV 16. Springer International Publishing, 2020: 644-663. |
[44] | CHENG R, RAZANI R, TAGHAVI E, et al. 2-s3net: Attentive feature fusion with adaptive feature selection for sparse semantic segmentation network[C]// Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2021: 12547-12556. |
[45] | XIAO A, YANG X, LU S, et al. FPS-Net: A convolutional fusion network for large-scale LiDAR point cloud segmentation[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 176: 237-249. |
[46] | PASCHALIDOU D, GOOL L, GEIGER A. Learning unsupervised hierarchical part decomposition of 3d objects from a single rgb image[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 1060-1070. |
[47] | SHARMA G, DASH B, GADELHA M, et al. Surfit: learning to fit surfaces improves few shot learning on point clouds[J]. CoRR 2021, abs/2112.13942. |
[48] | LI Y, HAN G, LIU X. Dcnet: Densely connected deep convolutional encoder-decoder network for nasopharyngeal carcinoma segmentation[J]. Sensors, 2021, 21(23): 7877. |
[49] | JIANG C, SUD A, MAKADIA A, et al. Local implicit grid representations for 3d scenes[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020: 6001-6010. |
[50] | TAKIKAWA T, LITALIEN J, YIN K, et al. Neural geometric level of detail: Real-time rendering with implicit 3d shapes[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 11358-11367. |
[51] | SITZMANN V, MARTEL J, BERGMAN A, et al. Implicit neural representations with periodic activation functions[J]. Advances in neural information processing systems, 2020, 33: 7462-7473. |
[52] | BOGO F, ROMERO J, LOPER M, et al. FAUST: Dataset and evaluation for 3D mesh registration[C]// Proceedings of the IEEE conference on computer vision and pattern recognition. 2014: 3794-3801. |
[53] | SUN X, WU J, ZHANG X, et al. Pix3d: Dataset and methods for single-image 3d shape modeling[C]// Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 2974-2983. |
[54] | KINGA D, ADAM J. A method for stochastic optimization[C]// International conference on learning representations (ICLR), 2015, 5: 6. |
[55] | LIN S, XIAO D, SHI Z, et al. Surface Reconstruction from Point Clouds without Normals by Parametrizing the Gauss Formula[J]. ACM Transactions on Graphics, 2022, 42(2): 1-19. |
[1] | WEI Yijin,FAN Jingchao. Classification Model of Agricultural Science and Technology Policies Based on Improved BERT-BiGRU-Attention [J]. Frontiers of Data and Computing, 2024, 6(6): 53-61. |
[2] | HE Wentong,LUO Ze. Object Detection with Federated Learning for Wildlife Camera Trap Images [J]. Frontiers of Data and Computing, 2024, 6(6): 85-96. |
[3] | YAN Zhiyu, RU Yiwei, SUN Fupeng, SUN Zhenan. Research on Video Behavior Recognition Method with Active Perception Mechanism [J]. Frontiers of Data and Computing, 2024, 6(5): 66-79. |
[4] | LIAO Libo, WANG Shudong, SONG Weimin, ZHANG Zhaoling, LI Gang, HUANG Yongsheng. The Study of Jet Tagging Algorithm Based on DeepSets at CEPC [J]. Frontiers of Data and Computing, 2024, 6(3): 108-115. |
[5] | YAN Jin, DONG Kejun, LI Hongtao. A Deep Web Tracker Detection Method with Coordinated Semantic and Co-Occurrence Features [J]. Frontiers of Data and Computing, 2024, 6(3): 127-138. |
[6] | KOU Dazhi. Automatic Teeth Segmentation on Dental Panoramic Radiographs with Deep Learning [J]. Frontiers of Data and Computing, 2024, 6(3): 162-172. |
[7] | CAI Chengfei, LI Jun, JIAO Yiping, WANG Xiangxue, GUO Guanchen, XU Jun. Progress and Challenges of Medical Multimodal Data Fusion Methods Based on Deep Learning in Oncology [J]. Frontiers of Data and Computing, 2024, 6(3): 3-14. |
[8] | ZHENG Yinuo, SUN Muyi, ZHANG Hongyun, ZHANG Jing, DENG Tianzheng, LIU Qian. Application of Deep Learning in Dental Implant Imaging: Research Progress and Challenges [J]. Frontiers of Data and Computing, 2024, 6(3): 41-49. |
[9] | YUAN Jialin, OUYANG Rushan, DAI Yi, LAI Xiaohui, MA Jie, GONG Jingshan. Assessing the Clinical Utility of a Deep Learning-Based Model for Calcification Recognition and Classification in Mammograms [J]. Frontiers of Data and Computing, 2024, 6(2): 68-79. |
[10] | WANG Ziyuan, WANG Guozhong. Application of Improved Lightweight YOLOv5 Algorithm in Pedestrian Detection [J]. Frontiers of Data and Computing, 2023, 5(6): 161-172. |
[11] | JU Jiaji, HUANG Bo, ZHANG Shuai, GUO Ruyan. A Dual-Channel Sentiment Analysis Model Integrating Sentiment Lexcion and Self-Attention [J]. Frontiers of Data and Computing, 2023, 5(4): 101-111. |
[12] | LI JunFei, XU LiMing, WANG Yang, WEI Xin. Review of Automatic Citation Classification Based on Deep Learning Technology [J]. Frontiers of Data and Computing, 2023, 5(4): 86-100. |
[13] | LI Yan,HE Hongbo,WANG Runqiang. A Survey of Research on Microblog Popularity Prediction [J]. Frontiers of Data and Computing, 2023, 5(2): 119-135. |
[14] | LIU Yunfan,LI Qi,SUN Zhenan,TAN Tieniu. Face Age Editing Methods Based on Generative Adversarial Network: A Survey [J]. Frontiers of Data and Computing, 2023, 5(2): 2-23. |
[15] | TU Youyou,ZHENG Qijing,ZHAO Jin. Research on Quantum Proton Coupled Charge Transfer Process Based on Deep Neural Network [J]. Frontiers of Data and Computing, 2023, 5(2): 37-49. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||