[1] |
CMS C. Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC[J]. Physics Letters B, 2012, 716(2012): 30-61.
|
[2] |
ATLAS C. Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC[J]. Physics Letters B, 2012, 716(2012): 1-29.
|
[3] |
CHEN T Q, GUESTRIN C. Xgboost: A scalable tree boosting system[C]. Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining. ACM, 2016: 785-794.
|
[4] |
SUEHARA T, TANABE T. LCFIPlus: A framework for jet analysis in linear collider studies[J]. Nucl. Instrum. Meth, 2016, A808(2016): 109-116.
|
[5] |
BALDI T, BAUER K, ENG C, et al. Jet substructure classification in high-energy physics with deep neural networks[J]. Physical Review D, 2016, 93(9): 094034.
|
[6] |
BARNARD J, DAWE E N, DOLAN M J, et al. Parton shower uncertainties in jet substructure analyses with deep neural networks[J]. Physical Review D, 2017, 95(1): 014018.
|
[7] |
GUEST D, COLLADO J, BALDI P, et al. Jet flavor classification in high-energy physics with deep neural networks[J]. Physical Review D, 2016, 94(11): 112002.
|
[8] |
COGAN J, KAGAN K, STRAUSS E, et al. Jet-images: Computer vision inspired techniques for jet tagging[J]. Journal of High Energy Physics, 2015, 02: 118.
|
[9] |
LOUPPE G, CHO K, BECOT C, et al. QCD aware recursive neural networks for jet physics[J]. Journal of High Energy Physics, 2019, 01: 057.
|
[10] |
ZAHEER M, KOTTUR S, RAVANBAKHSH S, et al. Deep sets[C]. 2017, 3394-3404.
|
[11] |
KOMISKE P T, METODIEV E M, THALER J. Energy flow networks: Deep sets for particle jets[J]. Journal of High Energy Physics, 2019, 01: 121.
|
[12] |
NAIR V, HINTON G E. Rectified linear units improve restricted boltzmann machines[C]. Proceedings of the 27th International Conference on International Conference on Machine Learning, 2010, 807-814.
|
[13] |
HE K M, ZHANG X Y, REN S P, et al. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification[C]. 2015 IEEE International Conference on Computer Vision, 2015: 1026-1034.
|
[14] |
GALLICCHIO J, SCHWARTZ M D. Quark and gluon tagging at the LHC[J]. Physical Review Letter, 2011, 107: 172001.
|
[15] |
GALLICCHIO J, SCHWARTZ M D. Quark and gluon jet substructure[J]. Journal of High Energy Physics, 2013, 04: 090.
|
[16] |
ATLAS COLLABORATION. Light-quark and gluon jet discrimination in pp collisions at √s = 7 TeV with the ATLAS detector[J]. The European Physical Journal C, 2014, 74(8): 3023.
|
[17] |
GRAS P, HOCHE S, KAR D, et al. Systematics of quark/gluon tagging[J]. Journal of High Energy Physics, 2017, 7: 091.
|
[18] |
FRIEDMAN J H. Greedy function approximation: a gradient boosting machine[J]. Annals of statistics, 2001, 29(5): 1189-1232.
|
[19] |
ZHOU Z H, FENG J. Deep forest: Towards[J/OL]. 2020-6-6 [2023-9-25]. https://arxiv.org/abs/1702.08835.
|
[20] |
KILIAN W, OHL T, REUTER J. WHIZARD: Simulating multi-particle processes at LHC and ILC[J]. The European Physical Journal C, 2011, 71: 1742.
|
[21] |
MORETTI M, OHL T, REUTER J. O'Mega: An optimizing matrix element generator[J/OL]. 2001-2-15 [2023-9-25]. https://arxiv.org/abs/hep-ph/0102195.
|
[22] |
THE CEPC STUDY GROUP. CEPC conceptual design report: Volume 2-Physics & Detector[J/OL]. 2018-11-23 [2023-9-25]. https://arxiv.org/abs/1811.10545.
|
[23] |
RUAN M Q, VIDEAU H. Arbor, a new approach of the particle flow algorithm[J/OL]. 2016 [2023-9-25]. https://arxiv.org/abs/1403.4784v2.
|
[24] |
QU H L, GOUSKOS L. ParticleNet: Jet tagging via particle clouds[J]. Physical Review D, 2020, 101(5): 056019.
|
[25] |
QU H L, LI C Q, QIAN S T. Particle transformer for jet tagging[J/OL]. 2022 [2023-9-25]. https://arxiv.org/abs/2202.03772.
|
[26] |
GONG S Q, MENG Q, ZHANG J. et al. An efficient Lorentz equivariant graph neural network for jet tagging[J]. Journal of High Energy Physics, 2022, 7: 030.
|
[27] |
DREYER F A, and QU H L. Jet tagging in the Lund plane with graph networks[J]. Journal of High Energy Physics, 2021, 03: 052.
|