Frontiers of Data and Computing ›› 2023, Vol. 5 ›› Issue (2): 2-23.
CSTR: 32002.14.jfdc.CN10-1649/TP.2023.02.001
doi: 10.11871/jfdc.issn.2096-742X.2023.02.001
• Special Issue: AI for Science • Previous Articles Next Articles
LIU Yunfan1,2(),LI Qi2,SUN Zhenan1,2,*(),TAN Tieniu1,2
Received:
2023-01-28
Online:
2023-04-20
Published:
2023-04-24
Contact:
SUN Zhenan
E-mail:yunfan.liu@cripac.ia.ac.cn;znsun@nlpr.ia.ac.cn
LIU Yunfan,LI Qi,SUN Zhenan,TAN Tieniu. Face Age Editing Methods Based on Generative Adversarial Network: A Survey[J]. Frontiers of Data and Computing, 2023, 5(2): 2-23, https://cstr.cn/32002.14.jfdc.CN10-1649/TP.2023.02.001.
Table 1
Commonly used public face age editing datasets"
数据集名称 | 图像数量 | 人物 数量 | 年龄 范围 | 标签 类型 | 图像属性 | 采集环境 | 图像来源 |
---|---|---|---|---|---|---|---|
FG-Net[ | 1002 | 82 | 0-69 | 年龄值 | 灰度、彩色 | 非受控 | 私人数码/扫描照片 |
MORPH Alb.1[ | 1690 | 515 | 15-68 | 年龄值 | 灰度 | 受控 | 受控环境下采集 |
MORPH Alb.2[ | 55134 | 13618 | 16-77 | 年龄值 | 彩色 | 受控 | 受控环境下采集 |
CACD[ | 163446 | 2000 | 16-62 | 年龄值 | 彩色 | 非受控 | 谷歌图像搜索引擎 |
IMDB-WIKI[ | 523051 | 20284 | 0-100 | 年龄值 | 灰度、彩色 | 非受控 | IMDB、Wikipedia网站 |
UTKFace[ | 20000 | - | 0-116 | 年龄值 | 灰度、彩色 | 非受控 | 谷歌、必应图像搜索引擎 |
FFHQ-Aging[ | 70000 | - | 0-70+ | 年龄组 | 彩色 | 非受控 | 原始FFHQ数据集 |
Table 2
Summary of image domain translation based face age editing methods"
模型名称 | 映射类型 | 网络类型 | 年龄组 跨度 | 年龄组 个数 | 人脸年龄编辑数据集 | 定量测量指标 |
---|---|---|---|---|---|---|
PA-GAN[ | 双域 | 单向 | 10 | 4 | FG-Net, MORPH, CACD | MEA, FVC, FVA |
AW-GAN[ | 双域 | 单向 | 10 | 4 | MORPH, CACD | MEA, DMEA, FVC, FVA, APR |
A3GAN[ | 双域 | 单向 | 10 | 4 | FG-Net, MORPH, CACD, CelebA | MEA, DMEA, FVC, FVA, APR |
PFA-GAN[ | 多域 | 单向 | 10 | 4 | FG-Net, MORPH, CACD | IS, MEA, DMEA, FVC, FVA, PCC |
S2GAN[ | 多域 | 单向 | 10 | 5 | MORPH, CACD | ACA, FID, MEA, DMEA, FVA |
IPC-GAN[ | 多域 | 单向 | 10 | 5 | CACD | IS, US |
PA-GAN++[ | 多域 | 单向 | 10 | 4 | FG-Net, MORPH, CACD | MEA, FVC, FVA, US |
ldGAN[ | 多域 | 单向 | 3 | 12 | MORPH | MEA, FVC |
CAN-GAN[ | 多域 | 单向 | 10 | 4 | FG-Net, MORPH, CACD | MEA, DMEA, FVC, FVA |
GLCA-GAN[ | 多域 | 单向 | 10 | 4 | FG-Net, MORPH, CACD | FVA |
WaveletGLCA-GAN[ | 多域 | 单向 | 10 | 4 | FG-Net, MORPH, CACD | MEA, FVA |
AM-GAN[ | 多域 | 单向 | 连续年龄编辑 | FFHQ-Aging | FID, DMAE | |
AA-GAN[ | 多域 | 单向 | 10 | 5 | MORPH | MEA, FVC, FVA |
MTFE-GAN[ | 多域 | 单向 | 10 | 4 | MORPH, CACD | FID, MEA, FVA, KL散度 |
DEF-Net[ | 多域 | 单向 | 10 | 4 | MORPH, CACD | US |
ranking-GAN[ | 多域 | 单向 | 5 | 7 | MORPH | MEA, FVC |
Triple-GAN[ | 多域 | 单向 | 10 | 5 | MORPH, CACD | ACA, MEA, FVC, FVA |
C-GAN[ | 多域 | 单向 | 10 | 7 | FG-Net, MORPH, CACD | FVA, US |
Dual-cGAN[ | 多域 | 循环 | 10 | 9 | FG-Net, UTKFace | FVC, US |
F-GAN[ | 多域 | 循环 | 10 | 6 | FG-Net, CelebA | DMEA, US |
SA-GAN[ | 多域 | 循环 | 4~30 | 9 | FG-Net, MORPH, CACD, UTKFace, IMDB-WIKI, CelebA | DMEA, FVC, FVA |
NSG-GAN[ | 多域 | 循环 | 10 | 4 | FG-Net, MORPH, CACD | DMEA, FVC, FVA |
Table 3
Summary of age feature decomposition based face age editing methods"
模型名称 | 子空间数量 | 解耦方法 | 年龄组 跨度 | 年龄组 数量 | 人脸年龄编辑数据集 | 定量测量指标 |
---|---|---|---|---|---|---|
CAAE[ | 2 | 对抗训练 | 5~10 | 10 | FG-Net, MORPH, CACD | US |
AgeGAN++[ | 2 | 对抗训练 | 4~30 | 9 | FG-Net, MORPH, CACD | FID, EMA, FVC, US |
AIM[ | 2 | 域适应 | 老化/年轻化 | FG-Net, MORPH, CACD | FVA | |
MLTFace[ | 2 | 域适应 | 10 | 7 | FG-Net, MORPH, CACD, AgeDB, LCAF | ACA, EVC, FVA, US |
Age-cGAN[ | 2 | 优化重建 | 10 | 6 | IMDB-WIKI | FVA |
CFA-GAN[ | 2 | 正交分解 | 连续年龄编辑 | MORPH | MEA, DMEA, FVC, FVA | |
CA-GAN[ | 2 | 伪成对数据 | 4 | 8 | FG-Net, CACD, ITWCC | FVA |
PAT-GAN[ | 2 | 特征调制 | 连续年龄编辑 | CACD, FFHQ-Aging | FID, MEA, FVA | |
HRFAE[ | 2 | 特征调制 | 连续年龄编辑 | CACD, FFHQ-Aging, CelebA-HQ | MEA, APR, Blurriness | |
LATS[ | 2 | AdaIN | 3~20 | 10 | CACD, FFHQ-Aging, CelebA-HQ | US |
ReAgingGAN[ | 2 | AdaIN | 连续年龄编辑 | FG-Net, MORPH, CACD | FID, ACA | |
DAAE[ | 3 | VAE优化目标 | 连续年龄编辑 | FG-Net, MORPH, CACD, UTKFace, AgeDB | DMEA, MEA, FVA | |
AgeFlow[ | 3 | 基于flow的模型 | 10 | 4 | FG-Net, MORPH, CACD, CelebA | ACA, FVC, APR |
DLATS[ | 3 | 人脸形状正则化 | 10 | 6 | FFHQ-Aging | FVA, US |
Table 4
Summary of latent space interpolation based face age editing methods"
模型名称 | 插值隐空间 | 插值向量建模方法 | 人脸年龄编辑数据集 | 定量测量指标 |
---|---|---|---|---|
StyleGAN2Distillation[ | 聚类中心的差向量 | FFHQ | FID, US | |
StyleSpaceAnalysis[ | 聚类中心的差向量 | FFHQ | ACA, DCI | |
ACU[ | 聚类中心的差向量 | FFHQ | ACA, FID | |
InterFaceGAN[ | 支持向量机分类平面法向量 | CelebA-HQ | - | |
EnjoyEditingGAN[ | 多层感知机预测 | FFHQ, CelebA, CelebA-HQ | FVA, US | |
Latent-Transformer[ | Transformer预测 | CelebA-HQ | FVA, APR | |
Style-Transformer[ | Transformer预测 | FFHQ, CelebA-HQ | FID | |
SAM[ | 编码器预测 | CelebA-HQ | DMEA, US |
[1] | HU G, HUA Y, YUAN Y et al. Attribute-Enhanced Face Recognition with Neural Tensor Fusion Networks[C]. Proceedings of the IEEE International Conference on Computer Vision, 2017: 3764-3773. |
[2] | LIU D, WANG N, PENG C et al. Deep Attribute Guided Representation for Heterogeneous Face Recognition[C]. Proceedings of the International Joint Conference on Artificial Intelligence, 2018: 835-841. |
[3] | HUANG C, LI Y, LOY C C et al. Deep Imbalanced Lear-ning for Face Recognition and Attribute Prediction[J]. IEEE Transactions on Pattern Analysis and Machine Inte-lligence, 2020, 42(11): 2781-2794. |
[4] |
LOSS U A aware, JIANG L, ZHANG J et al. Robust RGB-D Face Recognition Using Attribute-Aware Loss[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(10): 2552-2566.
doi: 10.1109/TPAMI.2019.2919284 pmid: 31144624 |
[5] |
HAN H, JAIN A K, WANG F et al. Heterogeneous Face Attribute Estimation: A Deep Multi-Task Learning App-roach[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(11): 2597-2609.
doi: 10.1109/TPAMI.34 |
[6] | ZAEEMZADEH A, GHADAR S, FAIETA B et al. Face Image Retrieval with Attribute Manipulation[C]. Pro-ceedings of the IEEE International Conference on Com-puter Vision, 2021: 12096-12105. |
[7] | FANG Y, XIAO Z, ZHANG W et al. Attribute Prototype Learning for Interactive Face Retrieval[J]. IEEE Trans-actions on Information Forensics and Security, 2021, 16 (3): 2593-2607. |
[8] | CHOI Y, CHOI M, KIM M et al. StarGAN: Unified Gen-erative Adversarial Networks for Multi-domain Image-to-Image Translation[C]. Proceedings of the IEEE Con-ference on Computer Vision and Pattern Recognition, 2018: 8789-8797. |
[9] |
HE Z, ZUO W, KAN M et al. AttGAN: Facial Attribute Editing by only Changing What You Want[J]. IEEE Transactions on Image Processing, 2019, 28(11): 5464-5478.
doi: 10.1109/TIP.2019.2916751 pmid: 31107649 |
[10] | LIU M, DING Y, XIA M et al. STGAN: A Unified Selec-tive Transfer Network for Arbitrary Image Attribute Editing[C]. Proceedings of the IEEE Conference on Computer Vi-sion and Pattern Recognition, 2019: 3668-3677. |
[11] | LIN Y J, WU P W, CHANG C H et al. RelGAN: Multi-domain Image-to-image Translation via Relative Attr-ibutes[C]. Proceedings of the IEEE International Con-ference on Computer Vision, 2019: 5913-5921. |
[12] | ZHAO J, CHENG Y, CHENG Y et al. Look Across Elapse: Disentangled Representation Learning and Photo-realistic Cross-age Face Synthesis for Age-invariant Face Recognition[C]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019: 9251-9258. |
[13] | HUANG Z, ZHANG J, SHAN H. When Age-Invariant Face Recognition Meets Face Age Synthesis: A Multi-Task Learning Framework[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2021: 7278-7287. |
[14] | HUANG Z, ZHANG J, SHAN H. When Age-Invariant Face Recognition Meets Face Age Synthesis: A Multi-Task Learning Framework and A New Benchmark[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 1(1): 1-16. |
[15] | RAMANATHAN N, CHELLAPPA R. Modeling Age Progression in Young Faces[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2006: 387-394. |
[16] |
MARK L S, TODD J T. The Perception of Growth in Three Dimensions[J]. Perception & Psychophysics, 1983, 33(2): 193-196.
doi: 10.3758/BF03202839 |
[17] |
SUO J, CHEN X, SHAN S et al. A Concatenational Gr-aph Evolution Aging Model[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11): 2083-2096.
doi: 10.1109/TPAMI.2012.22 |
[18] |
SUO J, ZHU S C, SHAN S et al. A Compositional and Dynamic Model for Face Aging[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(3): 385-401.
doi: 10.1109/TPAMI.2009.39 pmid: 20075467 |
[19] | RAMANATHAN N, CHELLAPPA R. Modeling Shape and Textural Variations in Aging Faces[C]. Proceedings of the IEEE International Conference on Automatic Face and Gesture Recognition, 2008: 1-8. |
[20] | WANG W, CUI Z, YAN Y et al. Recurrent Face Aging[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 2378-2386. |
[21] | DUONG C N, QUACH K G, LUU K et al. Temporal Non-volume Preserving Approach to Facial Age-Progression and Age-Invariant Face Recognition[C]. Proceedings of the IEEE International Conference on Computer Vision, 2017: 3755-3763. |
[22] | SHU X, TANG J, LAI H et al. Personalized Age Progr-ession with Aging Dictionary[C]. Proceedings of the IEEE International Conference on Computer Vision, 2015: 3970-3978. |
[23] | SHU X, TANG J, LI Z et al. Personalized Age Progre-ssion with Bi-Level Aging Dictionary Learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelli-gence, 2018, 40(4): 905-917. |
[24] |
GOODFELLOW I, POUGET-ABADIE J, MIRZA M et al. Generative Adversarial Networks[J]. Communications of the ACM, 2020, 63(11): 139-144.
doi: 10.1145/3422622 |
[25] | RADFORD A, METZ L, CHINTALA S. Unsupervised Representation Learning with Deep Convolutional Gen-erative Adversarial Networks[C]. Proceedings of the Inte-rnational Conference on Learning Representations, 2016: 1-16. |
[26] | MAO X, LI Q, XIE H et al. Least Squares Generative Adversarial Networks[C]. Proceedings of the IEEE Inte-rnational Conference on Computer Vision, 2017: 2813-2821. |
[27] | ARJOVSKY M, CHINTALA S, BOTTOU L. Wasserstein Generative Adversarial Networks[C]. Proceedings of the International Conference on Machine Learning, 2017: 214-223. |
[28] | GULRAJANI I, AHMED F, ARJOVSKY M et al. Imp-roved Training of Wasserstein GANs[C]. Proceedings of the Annual Conference on Neural Information Processing Systems, 2017: 5768-5778. |
[29] | KARRAS T, TIMO A, SAMULI L et al. Progressive Gro-wing of GANs for Improved Quality, Stability, and Var-iation [C]. Proceedings of the International Conference on Learning Representations, 2018: 1-26. |
[30] |
KARRAS T, LAINE S, AILA T. A Style-Based Generator Architecture for Generative Adversarial Networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(12): 4217-4228.
doi: 10.1109/TPAMI.2020.2970919 |
[31] | KARRAS T, LAINE S, AITTALA M et al. Analyzing and Improving the Image Quality of StyleGAN[C]. Procee-dings of the IEEE Conference on Computer Vision and Pattern Recognition, 2020: 8107-8116. |
[32] | KARRAS T, AITTALA M, LAINE S et al. Alias-Free Generative Adversarial Networks[C]. Proceedings of the Annual Conference on Neural Information Processing Systems, 2021: 852-863. |
[33] | SHEN Y, GU J, TANG X et al. Interpreting the Latent Space of GANs for Semantic Face Editing[C]. Proceed-ings of the IEEE Conference on Computer Vision and Pattern Recognition, 2020: 9240-9249. |
[34] | VIAZOVETSKYI Y, IVASHKIN V, KASHIN E. Style-GAN2 Distillation for Feed-Forward Image Manipulation[C]. Proceedings of the European Conference on Computer Vision, 2020: 170-186. |
[35] | WU Z, LISCHINSKI D, SHECHTMAN E. StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2021: 12858-12867. |
[36] | YAO X, NEWSON A, GOUSSEAU Y et al. A Latent Transformer for Disentangled Face Editing in Images and Videos[C]. Proceedings of the IEEE International Conference on Computer Vision, 2021: 13769-13778. |
[37] | ZHUANG P, KOYEJO O, SCHWING A G. Enjoy Your Editing: Controllable GANs for Image Editing via Latent Space Navigation[C]. Proceedings of the International Conference on Learning Representations, 2021: 1-16. |
[38] |
PANG Y, LIN J, QIN T et al. Image-to-Image Translation: Methods and Applications[J]. IEEE Transactions on Multimedia, 2022, 24(3): 3859-3881.
doi: 10.1109/TMM.2021.3109419 |
[39] |
GRIMMER M, RAMACHANDRA R, BUSCH C. Deep Face Age Progression: A Survey[J]. IEEE Access, 2021, 9(1): 83376-83393.
doi: 10.1109/ACCESS.2021.3085835 |
[40] |
PANIS G, LANITIS A, TSAPATSOULIS N et al. Ove-rview of Research on Facial Aging using the FG-NET Aging Database[J]. IET Biometrics, 2016, 5(2): 37-46.
doi: 10.1049/iet-bmt.2014.0053 |
[41] | RICANEK K, TESAFAYE T. MORPH: A Longitudinal Image Database of Normal Adult Age-progression[C]. Proceedings of the IEEE International Conference on Automatic Face and Gesture Recognition, 2006: 341-345. |
[42] | CHEN B C, CHEN C S, HSU W H. Cross-age Reference Coding for Age-invariant Face Recognition and Retrieval[C]. Proceedings of the European Conference on Comp-uter Vision, 2014: 768-783. |
[43] | ROTHE R, TIMOFTE R,VAN GOOL L. DEX: Deep EXpectation of Apparent Age from a Single Image[C]. Proceedings of the IEEE International Conference on Computer Vision Workshops, 2015: 252-257. |
[44] | ZHANG Z, SONG Y, QI H. Age Progression / Regression by Conditional Adversarial Autoencoder[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 5810-5818. |
[45] | OR-EL R, SENGUPTA S, FRIED O et al. Lifespan Age Transformation Synthesis[C]. Proceedings of the European Conference on Computer Vision. Springer International Pu-blishing, 2020: 739-755. |
[46] | LIU Z, LUO P, WANG X et al. Deep Learning Face At-tributes in the Wild[C]. Proceedings of the IEEE Interna-tional Conference on Computer Vision, 2015: 3730-3738. |
[47] | MOSCHOGLOU S, PAPAIOANNOU A, SAGONAS C et al. AgeDB: The First Manually Collected, In-the-Wild Age Database[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2017: 1997-2005. |
[48] | SRINIVAS N, RICANEK K, MICHALSKI D et al. Face Recognition Algorithm Bias: Performance Differences on Images of children and adults[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2019: 2269-2277. |
[49] | HUANG X, BELONGIE S. Arbitrary Style transfer in real-time with adaptive instance normalization[C]. Proc-eedings of the IEEE International Conference on Compu-ter Vision, 2017: 1501-1510. |
[50] | XIA W, ZHANG Y, YANG Y et al. GAN Inversion: A Survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 1(1): 1-17. |
[51] | SALIMANS T, GOODFELLOW I, ZAREMBA W et al. Improved Techniques for Training GANs[C]. Proceed-ings of the Annual Conference on Neural Information Processing Systems, 2016: 2234-2242. |
[52] | SZEGEDY C, VANHOUCKE V, IOFFE S et al. Rethin-king the Inception Architecture for Computer Vision[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 2016: 2818-2826. |
[53] | HEUSEL M, RAMSAUER H, UNTERTHINER T et al. GANs Trained by a Two Time-scale Update Rule Con-verge to a Local Nash Equilibrium[C]. Proceedings of the Annual Conference on Neural Information Processing Sys-tems, 2017: 6627-6638. |
[54] |
HUANG Z, CHEN S, ZHANG J et al. PFA-GAN: Pro-gressive Face Aging with Generative Adversarial Net-work[J]. IEEE Transactions on Information Forensics and Security, 2021, 16(4): 2031-2045.
doi: 10.1109/TIFS.10206 |
[55] | EASTWOOD C, WILLIAMS C K I. A Framework for the Quantitative Evaluation of Disentangled Represen-tations[C]. Proceedings of the International Conference on Learning Representations, 2018: 1-15. |
[56] | YANG H, HUANG D, WANG Y et al. Learning Face Age Progression: A Pyramid Architecture of GANs[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 31-39. |
[57] | LIU Y, LI Q, SUN Z. Attribute-aware Face Aging with Wavelet-based Generative Adversarial Networks[C]. Proc-eedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019: 11869-11878. |
[58] |
LIU Y, LI Q, SUN Z et al. A3GAN: An Attribute-Aware Attentive Generative Adversarial Network for Face Ag-ing[J]. IEEE Transactions on Information Forensics and Security, 2021, 16(2): 2776-2790.
doi: 10.1109/TIFS.2021.3065499 |
[59] | HE Z, KAN M, SHAN S et al. S2GAN: Share Aging Factors Across Ages and Share Aging Trends Among Individuals[C]. Proceedings of the IEEE International Conference on Computer Vision, 2019: 9439-9448. |
[60] | WANG Z, XU T, WEIXIN L et al. Face Aging with Identity-Preserved Conditional Generative Adversarial Networks[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7939-7947. |
[61] |
YANG H, HUANG D, WANG Y et al. Learning Con-tinuous Face Age Progression: A Pyramid of GANs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(2): 499-515.
doi: 10.1109/TPAMI.34 |
[62] |
SUN Y, TANG J, SHU X et al. Facial Age Synthesis with Label Distribution-Guided Generative Adversarial Network[J]. IEEE Transactions on Information Forensics and Security, 2020, 15(3): 2679-2691.
doi: 10.1109/TIFS.10206 |
[63] |
SHI C, ZHANG J, YAO Y et al. CAN-GAN: Conditi-oned-attention normalized GAN for face age synthesis[J]. Pattern Recognition Letters, 2020, 138(2): 520-526.
doi: 10.1016/j.patrec.2020.08.021 |
[64] | LI P, HU Y, LI Q et al. Global and Local Consistent Age Generative Adversarial Networks[C]. Proceedings of the International Conference on Pattern Recognition, 2018: 1073-1078. |
[65] |
LI P, HU Y, HE R et al. Global and Local Consistent Wavelet-Domain Age Synthesis[J]. IEEE Transactions on Information Forensics and Security, 2019, 14(11): 2943-2957.
doi: 10.1109/TIFS.10206 |
[66] | DESPOIS J, FLAMENT F,MATTHIEU PERROT. Agin-gMapGAN (AMGAN): High-Resolution Contr-ollable Face Aging with Spatially-Aware Conditional GANs[C]. Proceedings of the European Conference on Computer Vision Workshop, 2022: 613-628. |
[67] | ZHU H, HUANG Z, SHAN H et al. Look Globally, Age Locally: Face Aging with an Attention Mechanism[C]. Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, IEEE, 2020: 1963-1967. |
[68] |
WANG H, SANCHEZ V, LI C T. Age-Oriented Face Synthesis with Conditional Discriminator Pool and Adv-ersarial Triplet Loss[J]. IEEE Transactions on Image Processing, 2021, 30(4): 5413-5425.
doi: 10.1109/TIP.2021.3084106 |
[69] | DUAN M, LI K, LIAO Q et al. DEF-Net: A Face Aging Model by Using Different Emotional Learnings[J]. IEEE Transactions on Circuits and Systems for Video Tech-nology, 2022, 32(5): 3012-3022. |
[70] | SUN Y, TANG J, SUN Z et al. Facial Age and Exp-ression Synthesis Using Ordinal Ranking Adversarial Networks[J]. IEEE Transactions on Information Fore-nsics and Security, 2020, 15(2): 2960-2972. |
[71] | FANG H, DENG W, ZHONG Y et al. Triple-GAN: Prog-ressive Face Aging with Triple Translation Loss[C]. Proc-eedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2020: 3500-3509. |
[72] | LIU S, SUN Y, ZHU D et al. Face Aging with Contextual Generative Adversarial Nets[C]. Proceedings of the ACM International Conference on Multimedia, 2017: 82-90. |
[73] | ZHU J Y, PARK T, ISOLA P et al. Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks[C]. Proceedings of the IEEE International Conference on Computer Vision, 2017: 2242-2251. |
[74] | ZHANG G, KAN M, SHAN S et al. Generative Adve-rsarial Network with Spatial Attention for Face Attribute Editing[C]. Proceedings of the European Conference on Computer Vision, 2018: 422-437. |
[75] | SONG J, ZHANG J, GAO L et al. Dual Conditional GA-Ns for Face Aging and Rejuvenation[C]. Proceedings of the International Joint Conference on Artificial Intellig-ence, 2018: 899-905. |
[76] | PALSSON S, AGUSTSSON E, TIMOFTE R et al. Gen-erative Adversarial Style Transfer Networks for Face Aging[C]. Proceedings of the IEEE Conference on Com-puter Vision and Pattern Recognition Workshops, 2018: 2197-2205. |
[77] | LI Q, LIU Y, SUN Z. Age Progression and Regression with Spatial Attention Modules[C]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 11378-11385. |
[78] | SUN M, WANG J, LIU J et al. A Unified Framework for Biphasic Facial Age Translation with Noisy-Semantic Guided Generative Adversarial Networks[J]. IEEE Tran-sactions on Information Forensics and Security, 2022, 17(2): 1513-1527. |
[79] | KINGMA D P, WELLING M. Auto-encoding Variational Bayes[C]. Proceedings of the International Conference on Learning Representations, 2014: 1-14. |
[80] |
SONG J, ZHANG J, GAO L et al. AgeGAN++: Face Aging and Rejuvenation With Dual Conditional GANs[J]. IEEE Transactions on Multimedia, 2022, 24(2): 791-804.
doi: 10.1109/TMM.2021.3059336 |
[81] | ANTIPOV G, BACCOUCHE M, DUGELAY J L. Face Aging with Conditional Generative Adversarial Net-works[C]. Proceedings of the IEEE International Confer-ence on Image Processing, 2017: 2089-2093. |
[82] | JEON S, LEE P, HONG K et al. Continuous Face Aging Generative Adversarial Networks[C]. Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, 2021: 1995-1999. |
[83] | DEB D, AGGARWAL D, JAIN A K. Identifying Missing Children: Face Age-progression via Deep Feature Aging[C]. Proceedings of the International Conference on Pattern Recognition, 2020: 10540-10547. |
[84] | LI Z, JIANG R, AARABI P. Continuous Face Aging via Self-estimated Residual Age Embedding[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2021: 15003-15012. |
[85] | YAO X, PUY G, NEWSON A et al. High Resolution Face Age Editing[C]. Proceedings of the International Conference on Pattern Recognition, 2020: 8624-8631. |
[86] | MAKHMUDKHUJAEV F, HONG S, PARK I K. Re-Aging GAN: Toward Personalized Face Age Transfor-mation[C]. Proceedings of the IEEE International Con-ference on Computer Vision, 2021: 3888-3897. |
[87] | LI P, HUANG H, HU Y et al. Hierarchical Face Aging Through Disentangled Latent Characteristics[C]. Pro-ceedings of the European Conference on Computer Visi-on. Springer International Publishing, 2020: 86-101. |
[88] | HUANG Z, CHEN S, ZHANG J et al. AgeFlow: Cond-itional Age Progression and Regression with Normalizing Flows[C]. Proceedings of the International Joint Confer-ence on Artificial Intelligence, 2021: 743-750. |
[89] | HE S, LIAO W, YANG M Y et al. Disentangled Lifespan Face Synthesis[C]. Proceedings of the IEEE International Conference on Computer Vision, 2021: 3857-3866. |
[90] | WANG R, CHEN J, YU G et al. Attribute-specific Con-trol Units in StyleGAN for Fine-grained Image Mani-pulation[C]. Proceedings of the ACM International Conf-erence on Multimedia, 2021: 926-934. |
[91] | HU X, HUANG Q, SHI Z et al. Style Transformer for Image Inversion and Editing[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2022: 11337-11346. |
[92] | ALALUF Y, PATASHNIK O, COHEN-OR D. Only a Matter of Style: Age Transformation using a Style-based Regression Model[J]. ACM Transactions on Graphics, 2021, 40(4): 1-12. |
[93] | ROMERO A, ARBEL´AEZ P, GOOL L Van et al. SMIT: Stochastic Multi-Label Image-to-Image Translation[C]. Proceedings of the IEEE International Conference on Computer Vision Workshops, 2019: 1-10. |
[94] | WANG Y, GONZALEZ-GARCIA A, VAN DE WEIJER J et al. SDIT: Scalable and Diverse Cross-domain Image Translation[C]. Proceedings of the ACM International Conference on Multimedia, 2019: 1267-1276. |
[95] | XIAO T, HONG J, MA J. ELEGANT: Exchanging Latent Encodings with GAN for Transferring Multiple Face Attributes[C]. Proceedings of the European Conference on Computer Vision, 2018: 172-187. |
[96] | ZHU P, ABDAL R, QIN Y et al. SEAN: Image Synthesis with Semantic Region-adaptive Normalization[C]. Proc-eedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2020: 5103-5112. |
[1] | LI Yan,HE Hongbo,WANG Runqiang. A Survey of Research on Microblog Popularity Prediction [J]. Frontiers of Data and Computing, 2023, 5(2): 119-135. |
[2] | TU Youyou,ZHENG Qijing,ZHAO Jin. Research on Quantum Proton Coupled Charge Transfer Process Based on Deep Neural Network [J]. Frontiers of Data and Computing, 2023, 5(2): 37-49. |
[3] | XU Songyuan,LIU Feng. ESDRec: A Data Recommendation Model for Earth Big Data Platform [J]. Frontiers of Data and Computing, 2023, 5(1): 55-64. |
[4] | SHI Xuemei,ZHU Keliang,ZHANG Xiangmin,ZHANG Shutao,CHEN Liangfeng. Occluded Face Inpainting Method Based on Generative Adversarial Networks [J]. Frontiers of Data and Computing, 2022, 4(4): 123-131. |
[5] | CHEN Qiong,YANG Yong,HUANG Tianlin,FENG Yuan. A Survey on Few-Shot Image Semantic Segmentation [J]. Frontiers of Data and Computing, 2021, 3(6): 17-34. |
[6] | PU Xiaorong,HUANG Jiaxin,LIU Junchi,SUN Jiayu,LUO Jixiang,ZHAO Yue,CHEN Kecheng,REN Yazhou. A Survey on Clinical Oriented CT Image Denoising [J]. Frontiers of Data and Computing, 2021, 3(6): 35-49. |
[7] | HE Tao,WANG Guifang,MA Tingcan. Discovering Interdisciplinary Research Based on Word Embedding [J]. Frontiers of Data and Computing, 2021, 3(6): 50-59. |
[8] | ZHANG Yining,HE Hongbo,WANG Runqiang. A Survey on Popular Digital Audio Prediction Techniques [J]. Frontiers of Data and Computing, 2021, 3(4): 81-92. |
[9] | CHEN Zijian,LI Jun,YUE Zhaojuan,ZHAO Zefang. Hybrid Recommendation Model Based on Autoencoder and Attribute Information [J]. Frontiers of Data and Computing, 2021, 3(3): 148-155. |
[10] | XIAO Jianping,LONG Chun,ZHAO Jing,WEI Jinxia,HU Anlei,DU Guanyao. A Survey on Network Intrusion Detection Based on Deep Learning [J]. Frontiers of Data and Computing, 2021, 3(3): 59-74. |
[11] | LI Xu,LIAN Yifeng,ZHANG Haixia,HUANG kezhen. Key Technologies of Cyber Security Knowledge Graph [J]. Frontiers of Data and Computing, 2021, 3(3): 9-18. |
[12] | ZHAO Weiyu,ZHANG Honghai,ZHONG Bo. A Deep Learning Based Method for Remote Sensing Image Parcel Segmentation [J]. Frontiers of Data and Computing, 2021, 3(2): 133-141. |
[13] | SHEN Biao,CHEN Yang,YANG Chen,LIU Bowen. Computer Vision Detection and Analysis of Mesoscale Eddies in Marine Science [J]. Frontiers of Data and Computing, 2020, 2(6): 30-41. |
[14] | Ren Huiying,Wang Jing,Wang Yangang. Turbulence Modeling Based on AutoML [J]. Frontiers of Data and Computing, 2020, 2(4): 121-131. |
[15] | Zhang Shenglin,Lin Xiaofei,Sun Yongqian,Zhang Yuzhi,Pei Dan. Research on Unsupervised KPI Anomaly Detection Based on Deep Learning [J]. Frontiers of Data and Computing, 2020, 2(3): 87-100. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||