| [1] |
TOP500. El Capitan achieves top spot, Frontier and Aurora follow behind[EB/OL]. (2024-11-18). https://www.top500.org/lists/top500/2024/11/.
|
| [2] |
AMD. AMD Instinct™ MI300A Accelerators[EB/OL]. 2024, https://www.amd.com/en/products/accelerators/instinct/mi300/mi300a.html.
|
| [3] |
LINFORD J C, MICHALAKES J, VACHHARAJANI M, et al. Automatic Generation of Multicore Chemical Kernels[J]. IEEE Transactions on Parallel and Distributed Systems, 2011, 22(1): 119-131.
|
| [4] |
CAO K, WU Q, WANG L, et al. GPU-HADVPPM V1.0: a high-efficiency parallel GPU design of the piecewise parabolic method (PPM) for horizontal advection in an air quality model (CAMx V6.10)[J]. Geoscientific Model Development, 2023, 16(15): 4 367-4383.
|
| [5] |
CAO K, WU Q, WANG L, et al. GPUHADVPPM-4HIP V1.0: using the heterogeneous-compute interface for portability (HIP) to speed up the piecewise parabolic method in the CAMx (v6.10) air quality model on China’s domestic GPU-like accelerator[J]. Geoscientific Model Development, 2024, 17(17): 6 887-6901.
|
| [6] |
GROUP E-M W. Source code and input data of EPICC-Model[CP/DK]. https://earthlab.iap.ac.cn/re-sdown/info_388.html.
|
| [7] |
WALCEK C J, ALEKSIC N M. A simple but accurate mass conservative, peak-preserving, mixing ratio bounded advection algorithm with FORTRAN code[J]. Atmospheric Environment, 1998, 32(22): 3863-3880.
|
| [8] |
COLELLA P, WOODWARD P R. The Piecewise Parabolic Method (PPM) for gas-dynamical simulations[J]. Journal of Computational Physics, 1984, 54(1): 174-201.
|
| [9] |
WESELY M L. Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical models[J]. Atmospheric Environment (1967), 1989, 23(6): 1293-1304.
|
| [10] |
ZHANG L, BROOK J R, VET R. A revised parameterization for gaseous dry deposition in air-quality models[J]. Atmospheric Chemistry and Physics, 20 03, 3(6): 2067-2082.
|
| [11] |
ZAVERI R A, PETERS L K. A new lumped structure photochemical mechanism for large-scale applicatio-ns[J]. Journal of Geophysical Research: Atmosph-eres, 1999, 104(D23): 30387-30415.
|
| [12] |
GREG YARWOOD Y S A R B. Impact of CB6r5 Mechanism Changes on Air Pollutant Modeling in Texas[R]. 2020.
|
| [13] |
CHANG J S, BROST R A, ISAKSEN I S A, et al. A three-dimensional Eulerian acid deposition model: Physical concepts and formulation[J]. Journal of Geophysical Research: Atmospheres, 1987, 92(D12): 14 681-14700.
|
| [14] |
GE B Z, WANG Z F, XU X B, et al. Wet deposition of acidifying substances in different regions of China and the rest of East Asia: Modeling with updated NAQPMS[J]. Environmental Pollution, 2014, 187: 10-21.
doi: 10.1016/j.envpol.2013.12.014
pmid: 24418974
|
| [15] |
STRADER R, LURMANN F, PANDIS S N. Evaluation of secondary organic aerosol formation in winter[J]. Atmospheric Environment, 1999, 33(29): 4849-4863.
|
| [16] |
LANE T E, DONAHUE N M, PANDIS S N. Simulating secondary organic aerosol formation using the volatility basis-set approach in a chemical transport model[J]. Atmospheric Environment, 2008, 42(32): 7439-7451.
|
| [17] |
NENES A, PANDIS S N, PILINIS C. ISORROPIA: A New Thermodynamic Equilibrium Model for Multiphase Multicomponent Inorganic Aerosols[J]. Aqu-atic Geochemistry, 1998, 4(1): 123-152.
|
| [18] |
LI J, WANG Z, ZHUANG G, et al. Mixing of Asian mineral dust with anthropogenic pollutants over East Asia: a model case study of a super-duststorm in March 2010[J]. Atmospheric Chemistry and Physics, 2012, 12(16): 7591-7607.
|
| [19] |
ZHANG J, LIAN C, WANG W, et al. Amplified role of potential HONO sources in O3 formation in North China Plain during autumn haze aggravating processes[J]. Atmospheric Chemistry and Physics, 2022, 22(5): 3275-3302.
|
| [20] |
JACOB D J. Heterogeneous chemistry and tropospheric ozone[J]. Atmospheric Environment, 2000, 34(12): 2131-2159.
|
| [21] |
LI J, CHEN X, WANG Z, et al. Radiative and heterogeneous chemical effects of aerosols on ozone and inorganic aerosols over East Asia[J]. Science of The Total Environment, 2018, 622-623: 1327-1342.
|
| [22] |
YANG J, QU Y, CHEN Y, et al. Dominant physical and chemical processes impacting nitrate in Shandong of the North China Plain during winter haze events[J]. Science of The Total Environment, 2024, 912: 169065.
|
| [23] |
Z. JACOBSON M, TURCO R P. SMVGEAR: A sparse-matrix, vectorized gear code for atmospheric models[J]. Atmospheric Environment, 1994, 28(2): 2 73-284.
|
| [24] |
ELLER P, SINGH K, SANDU A, et al. Implementation and evaluation of an array of chemical solvers in the Global Chemical Transport Model GEOSCh-em[J]. Geoscientific Model Development, 2009, 2(2): 89-96.
|
| [25] |
LI M, LIU H, GENG G, et al. Anthropogenic emission inventories in China: a review[J]. National Science Review, 2017, 4(6): 834-866.
|
| [26] |
SKAMAROCK W, KLEMP J, DUDHIA J, et al. A Description of the Advanced Research WRF Version 3[M]. 2008.
|
| [27] |
CHAI Z, ZHANG H, ZHANG M, et al. China’s EarthLab—Forefront of Earth System Simulation Research[J]. Advances in Atmospheric Sciences, 2021, 38(10): 1611-1620.
|
| [28] |
LI Y, WU Q, WANG X, et al. Effects of chemical mechanism and meteorological factors on the concentration of atmospheric pollutants in the megacity Beijing, China[J]. Atmospheric Environment, 2024, 323: 120393.
|
| [29] |
MIELIKAINEN J, HUANG B, HUANG H-L A, et al. GPU Implementation of Stony Brook University 5-Class Cloud Microphysics Scheme in the WRF[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012, 5(2): 625-633.
|
| [30] |
MIELIKAINEN J, HUANG B, WANG J, et al. Compute unified device architecture (CUDA)-based parallelization of WRF Kessler cloud microphysics sche-me[J]. Computers & Geosciences, 2013, 52: 292-299.
|
| [31] |
HUANG M, HUANG B, MIELIKAINEN J, et al. Further Improvement on GPU-Based Parallel Implementation of WRF 5-Layer Thermal Diffusion Sch-eme[C]// proceedings of the 2013 International Conference on Parallel and Distributed Systems, 2013: 15-18.
|