[1] |
ALLEN M P, TILDESLEY D J. Computer simulation of liquids /2nd ed[M]. Oxford University Press, 2017.
|
[2] |
FRENKEL D, SMIT B. Understanding molecular simulation: from algorithms to applications /3rd ed[M]. Academic Press, 2023.
|
[3] |
LANDAU D P, BINDER K. A Guide to Monte Carlo Simulations in Statistical Physics /5th ed, Cambridge University Press, 2021.
|
[4] |
GROENHOF G. Introduction to QM/MM Simulations[M/OL]// Biomolecular Simulations: Methods and Protocols: vol.924, 2013: 43-66. https://link.springer.com/10.1007/978-1-62703-017-5_3. DOI:10.1007/978-1-62703-017-5_3.
|
[5] |
NOÉ F, TKATCHENKO A, MÜLLER K R, et al. Annual Review of Physical Chemistry: Machine Learning for Molecular Simulation[J/OL]. Annual Review of Physical Chemistry, 2020: 1-30. https://doi.org/10.1146/annurev-physchem-042018-.
|
[6] |
ZHANG J, LEI Y K, ZHANG Z, et al. A Perspective on Deep Learning for Molecular Modeling and Simulations[J/OL]. Journal of Physical Chemistry A, 2020, 124(34): 6745-6763. DOI:10.1021/acs.jpca.0c04473.
pmid: 32786668
|
[7] |
陈美霖, 刘端阳, 徐黎明, 等. 基于机器学习的力场模型研究综述[J]. 数据与计算发展前沿, 2023, 5(4): 27-37.
|
[8] |
GAO A, REMSING R C. Self-consistent determination of long-range electrostatics in neural network potentials[J/OL]. Nature Communications, 2022, 13(1): 1-11. DOI:10.1038/s41467-022-29243-2.
|
[9] |
JIA W, WANG H, CHEN M, et al. Pushing the limit of molecular dynamics with ab initio accuracy to 100 million atoms with machine learning[C/OL]. International Conference for High Performance Computing, Networking, Storage and Analysis, SC, 2020, 2020-Novem. DOI:10.1109/SC41405.2020.00009.
|
[10] |
WANG H, ZHANG L, HAN J, et al. DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics[J/OL]. Computer Physics Communications, 2018, 228: 178-184. https://doi.org/10.1016/j.cpc.2018.03.016. DOI:10.1016/j.cpc.2018.03.016.
|
[11] |
SIDKY H, CHEN W, FERGUSON A L. Machine learning for collective variable discovery and enhanced sampling in biomolecular simulation[J/OL]. Molecular Physics, 2020, 118(5). https://doi.org/10.1080/00268976.2020.1737742. DOI:10.1080/00268976.2020.1737742.
|
[12] |
ZHANG J, CHEN D, XIA Y, et al. Artificial Intelligence Enhanced Molecular Simulations[J/OL]. Journal of Chemical Theory and Computation, 2023. DOI:10.1021/acs.jctc.3c00214.
|
[13] |
BARRETT R, CHAKRABORTY M, AMIRKULOVA D, et al. HOOMD-TF: GPU-Accelerated, Online Machine Learning in the HOOMD-blue Molecular Dynamics Engine[J/OL]. Journal of Open Source Software, 2020, 5(51): 2367. DOI:10.21105/joss.02367.
|
[14] |
DOERR S, MAJEWSKI M, PÉREZ A, et al. TorchMD: A Deep Learning Framework for Molecular Simulations[J/OL]. Journal of Chemical Theory and Computation, 2021, 17(4): 2355-2363. DOI:10.1021/acs.jctc.0c01343.
|
[15] |
SCHOENHOLZ S S, CUBUK E D. JAX, M.D. A framework for differentiable physics[J/OL]. Advances in Neural Information Processing Systems, 2020, 2020-Decem(NeurIPS). DOI:10.1088/1742-5468/ac3ae9.
|
[16] |
HUANG Y P, XIA Y, YANG L, et al. SPONGE: A GPU-Accelerated Molecular Dynamics Package with Enhanced Sampling and AI-Driven Algorithms[J/OL]. Chinese Journal of Chemistry, 2022, 40(1): 160-168. DOI:10.1002/cjoc.202100456.
|
[17] |
徐顺, 王武, 张鉴, 等. 面向异构计算的高性能计算算法与软件[J]. 软件学报, 2021, 32(8):12.DOI:10.13328/j.cnki.jos.006008.
|
[18] |
HIGHLIGHTS of the TOP500 - JUNE 2023 [EB/OL]. (2023-6-1). [2023-9-18]. https://top500.org/lists/top500/2023/06/highs.
|
[19] |
KONDRATYUK N, NIKOLSKIY V, PAVLOV D, et al. GPU-accelerated molecular dynamics: State-of-art software performance and porting from Nvidia CUDA to AMD HIP[J/OL]. International Journal of High Performance Computing Applications, 2021, 35(4): 312-324. DOI:10.1177/10943420211008288.
|
[20] |
MA Z X, JIN Y Y, TANG S Z, et al. Unified Programming Models for Heterogeneous High-Performance Computers[J/OL]. Journal of Computer Science and Technology, 2023, 38(1): 211-218. DOI:10.1007/s11390-023-2888-4.
|
[21] |
BROWN W, WANG P. Implementing molecular dynamics on hybrid high performance computers-short range forces[J/OL]. Computer Physics Communications, 2011[2013-10-10]. http://www.sciencedirect.com/science/article/pii/S0010465510005102.
|
[22] |
ABRAHAM M J, MURTOLA T, SCHULZ R, et al. Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers[J/OL]. SoftwareX, 2015, 1-2: 19-25. DOI:10.1016/j.softx.2015.06.001.
|
[23] |
PHILLIPS J C, HARDY D J, MAIA J D C, et al. Scalable molecular dynamics on CPU and GPU architectures with NAMD[J/OL]. Journal of Chemical Physics, 2020, 153(4). https://doi.org/10.1063/5.0014475. DOI:10.1063/5.0014475.
|
[24] |
EASTMAN P, SWAILS J, CHODERA J D, et al. OpenMM 7: Rapid development of high performance algorithms for molecular dynamics[J/OL]. PLoS Computational Biology, 2017, 13(7): 1-17. DOI:10.1371/journal.pcbi.1005659.
|
[25] |
GLASER J, NGUYEN T D, ANDERSON J A, et al. Strong scaling of general-purpose molecular dynamics simulations on GPUs[J/OL]. Computer Physics Communications, 2015, 192(July): 97-107. http://linkinghub.elsevier.com/retrieve/pii/S0010465515000867. DOI:10.1016/j.cpc.2015.02.028.
|
[26] |
ZHU Y L, LIU H, LI Z W, et al. GALAMOST: GPU-accelerated large-scale molecular simulation toolkit[J/OL]. Journal of Computational Chemistry, 2013, 34(25): 2197-2211. DOI:10.1002/jcc.23365.
|
[27] |
Getting good performance from mdrun[EB/OL]. (2023-1-1). [2023-9-20]. https://manual.gromacs.org/current/user-guide/mdrun-performance.html.
|
[28] |
COLBERG P H, HÖFLING F. Highly accelerated simulations of glassy dynamics using GPUs: Caveats on limited floating-point precision[J/OL]. Computer Physics Communications, 2011, 182(5): 1120-1129.[2013-12-04]. http://linkinghub.elsevier.com/retrieve/pii/S0010465511000294. DOI:10.1016/j.cpc.2011.01.009.
|
[29] |
YANG C, ZENG Y, XU S, et al. The coherent motions of thermal active Brownian particles[J/OL]. Physical Chemistry Chemical Physics, 2023, 25(18): 13027-13032. DOI:10.1039/d2cp05984c.
|
[30] |
WAN B, YU J. Two-phase dynamics of DNA supercoiling based on DNA polymer physics[J/OL]. Biophysical Journal, 2022, 121(4): 658-669. https://doi.org/10.1016/j.bpj.2022.01.001. DOI:10.1016/j.bpj.2022.01.001.
pmid: 35016860
|
[31] |
NVIDA CUDA Documentation[EB/OL]. (2023-5-10). [2023-9-24]. https://docs.nvidia.com/cuda/doc/index.html.
|
[32] |
AMD ROCm Documentation[EB/OL]. (2023-8-18). [2023-9-24]. https://rocmdocs.amd.com/en/latest/index.html.
|
[33] |
YIN L K, XU S, JEONG S, et al. Vapor-liquid coexisting morphology of all-atom water model through generalized isothermal isobaric ensemble molecular dynamics simulation[J/OL]. Wuli Xuebao/Acta Physica Sinica, 2017, 66(13). DOI:10.7498/aps.66.136102.
|