Frontiers of Data and Computing ›› 2025, Vol. 7 ›› Issue (1): 38-55.
CSTR: 32002.14.jfdc.CN10-1649/TP.2025.01.003
doi: 10.11871/jfdc.issn.2096-742X.2025.01.003
• Special Issue: Generative Artificial Intelligence • Previous Articles Next Articles
JIN Jiali1,2(),GAO Siyuan3,GAO Manda3,WANG Wenbin3,LIU Shaozhen4,SUN Zhenan1,2,*(
)
Received:
2024-11-13
Online:
2025-02-20
Published:
2025-02-21
JIN Jiali, GAO Siyuan, GAO Manda, WANG Wenbin, LIU Shaozhen, SUN Zhenan. A Survey of Face Age Editing Based on Generative Adversarial Networks and Diffusion Models[J]. Frontiers of Data and Computing, 2025, 7(1): 38-55, https://cstr.cn/32002.14.jfdc.CN10-1649/TP.2025.01.003.
Table 1
Commonly used face age editing datasets"
数据集名称 | 发布时间 | 图像数量 | 人物数量 | 年龄范围 | 采集环境 | 标签类型 | 人物身份 |
---|---|---|---|---|---|---|---|
FG-Net[ | 2002年 | 1002 | 82 | 0-69 | 非受控 | 年龄值 | 普通人 |
MORPH Album1[ | 2006年 | 1690 | 515 | 15-68 | 受控 | 年龄值 | 普通人 |
MORPH Album2[ | 2006年 | 55134 | 13618 | 16-77 | 受控 | 年龄值 | 普通人 |
CACD[ | 2013年 | 163446 | 2000 | 16-62 | 非受控 | 年龄值 | 名人 |
Adience[ | 2014年 | 26580 | 2284 | 0-60+ | 非受控 | 年龄段 | 普通人 |
IMDB-WIKI[ | 2015年 | 523051 | 20284 | 0-100 | 非受控 | 年龄值 | 名人 |
UTKFace[ | 2017年 | 20000 | - | 0-116 | 非受控 | 年龄值 | 普通人 |
FFHQ-Aging[ | 2020年 | 70000 | - | 0-70+ | 非受控 | 年龄段 | 普通人 |
Table 2
Age editing methods based on image domain transformation"
方法 | 发布时间 | 数据集 | 创新点 |
---|---|---|---|
PA-GAN[ | 2018年 | FG-Net, MORPH, CACD | 引入金字塔结构的判别器,通过多尺度方式评估生成图像的年龄特征 |
AW-GAN[ | 2019年 | MORPH, CACD | 引入属性感知嵌入和小波包变换,增强局部纹理特征 |
Age GAN[ | 2018年 | UTKFace | 使用Dual cGANs架构实现年龄变换 |
AgeGAN++[ | 2021年 | FG-Net, MORPH, CACD | 引入表征解耦模块,增强身份特征与年龄特征的独立性 |
PA-GAN++[ | 2021年 | FG-Net, MORPH, CACD | 采用多个并行判别器,专注于不同年龄组的特征学习 |
Table 4
Age editing methods based on conditional GAN"
方法 | 发布时间 | 数据集 | 创新点 |
---|---|---|---|
Age-GAN[ | 2017年 | IMDB-WIKI | 通过更改GAN的条件输入实现面部的年龄合成 |
IPCGANs[ | 2018年 | CACD | 引入感知损失,通过高层特征保持生成图像与输入图像在身份上的一致性 |
CAAE[ | 2017年 | FG-Net, MORPH, CACD | 学习面部图像的高维流形和潜在空间映射 |
DAAE[ | 2020年 | CACD, MORPH, UTKFace, FG-NET | 引入两种先验分布和身份知识蒸馏,确保特征解耦的准确性 |
AIM[ | 2019年 | FG-Net, MORPH, CACD | 提取鲁棒的年龄无关身份特征表示 |
CFA-GAN[ | 2018年 | MORPH | 使用正交分解的编码器特征,确保身份和年龄特征独立性 |
Re-Aging GAN[ | 2021年 | FG-Net, MORPH, CACD | 引入年龄调制模块和自监督机制 |
CUSP[ | 2023年 | FFHQ | 引入掩码机制允许用户自定义结构保持级别,结合风格和内容编码器生成个性化的年龄编辑图像 |
Li等[ | 2020年 | MORPH,CACD,UTKface | 使用两个生成器分别处理年龄进展和回归任务,引入空间注意力机制,将图像的修改集中在面部年龄特征区域 |
CAFE-GAN[ | 2020年 | CelebA | 提出了一种补充注意力特征方法,设计用于只编辑与目标属性相关的面部区域 |
AcGAN[ | 2020年 | MORPH | 引入了注意力机制,使生成器只关注面部与年龄相关的区域 |
CAN-GAN[ | 2020年 | MORPH, CACD,FG-NET | 分配权重来度量每个面部特征在年龄分类中的重要性,从而提高分类器区分年龄的精度 |
A3-GAN[ | 2021年 | FG-Net, MORPH, CACD, CelebA | 将面部属性嵌入到生成器和判别器中,模型能够生成符合输入属性的老化效果,引入注意力机制修改与年龄相关的区域 |
AW-GAN[ | 2022年 | CACD, FG-Net, | 引入了小波变换与轻量化的卷积注意力模块 (mCBAM) |
Table 5
Age editing methods based on fusion GAN"
方法 | 发布时间 | 数据集 | 创新点 |
---|---|---|---|
LATS[ | 2020年 | FFHQ-aging | 创建多个年龄锚点类别,实现了一个近似连续的年龄潜在空间 |
DLFS[ | 2021年 | FFHQ-aging | 将面部的形状、纹理和身份特征解耦,以便在年龄转换时分别控制形状和纹理变化 |
SAM[ | 2021年 | FFHQ-aging | 将图像编码为潜在空间中的风格向量,并应用年龄回归网络来引导编码器生成对应于目标年龄的潜在编码 |
Liu等[ | 2021年 | UTKFace,YAFD[ | 引入 GD-GAN 和 TV-GAN,分别处理面部形状的几何变化和纹理变化 |
Ma等[ | 2021年 | UTKFace,CACD | 结合 cVAE 和 cGAN 的架构,无需大量配对样本 |
Table 6
Age editing methods based on diffusion models"
方法 | 发布时间 | 数据集 | 创新点 |
---|---|---|---|
FADING[ | 2023年 | FFHQ-Aging, CelebA | 在扩散模型中利用注意力机制进行准确的年龄编辑和解耦 |
PADA[ | 2023年 | FFHQ-AT[ | 提出多元化老化扩散自编码器(PADA),能够生成具有高级别语义变化和低级别随机变化的多样化老化结果 |
S Banerjee等[ | 2024年 | CelebA, AgeDB[ | 引入生物识别损失和对比损失,通过文本提示来控制年龄转换效果 |
Hou等[ | 2024年 | CelebA | 引入Rectifier模块弥补扩散过程中的特征损失,达到良好的属性编辑效果 |
PreciseControl[ | 2024年 | FFHQ | 融合StyleGAN的W+空间与扩散模型,实现细粒度属性编辑与语义控制的结合 |
[1] | PANIS G, LANITIS A, TSAPATSOULIS N, et al. Overview of Research on Facial Aging using the FG-NET Aging Database[J]. IET Biometrics, 2016, 5(2): 37-46. |
[2] | RICANEK K, TESAFAYE T. MORPH: A Longitudinal Image Database of Normal Adult Age-progression[C]. Proceedings of the IEEE International Conference on Automatic Face and Gesture Recognition, 2006: 341345. |
[3] | CHEN B C, CHEN C S, HSU W H. Cross-age Reference Coding for Age-invariant Face Recognition and Retrieval[C]. Proceedings of the European Conference on Computer Vision, 2014: 768-783. |
[4] | Eidinger E, Enbar R, Hassner T. Age and Gender Estimation of Unfiltered Faces[J]. IEEE Transactions on Information Forensics and Security, 2014, 9(12): 2170-2179. |
[5] | ROTHE R, TIMOFTE R, VAN GOOL L. DEX: Deep EXpectation of Apparent Age from a Single Image[C]. Proceedings of the IEEE International Conference on Computer Vision Workshops, 2015: 252-257. |
[6] | ZHANG Z, SONG Y, QI H. Age Progression/Regression by Conditional Adversarial Autoencoder[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 5810-5818. |
[7] | OR-EL R, SENGUPTA S, FRIED O, et al. Lifespan Age Transformation Synthesis[C]. Proceedings of the European Conference on Computer Vision, 2020: 739-755. |
[8] | LIU Z, LUO P, WANG X, et al. Deep Learning Face Attributes in the Wild[C]. Proceedings of the IEEE International Conference on Computer Vision, 2015: 3730-3738. |
[9] | KARRAS T, TIMO A, SAMULI L, et al. Progressive Growing of GANs for Improved Quality, Stability, and Variation[C]. Proceedings of the International Conference on Learning Representations, 2018: 1-26. |
[10] | Yi D, Lei Z, LI S Z. Age Estimation by Multi-Scale Convolutional Network[C]. Asian Conference on Computer Vision, 2014: 144-158. |
[11] | SALIMANS T, GOODFELLOW I, ZAREMBA W, et al. Improved Techniques for Training GANs[C]. Proceedings of the Annual Conference on Neural Information Processing Systems, 2016: 2234-2242. |
[12] | SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the Inception Architecture for Computer Vision[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 2818-2826. |
[13] | HEUSEL M, RAMSAUER H, UNTERTHINER T, et al. GANs Trained by a Two Time-scale Update Rule Converge to a Local Nash Equilibrium[C]. Proceedings of the Annual Conference on Neural Information Processing Systems, 2017: 6627-6638. |
[14] | ZHANG R, ISOLA P, EFROS A A, et al. The Unreasonable Effectiveness of Deep Features as a Perceptual Metric[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 586-595. |
[15] | DENG J, GUO J, XUE N, et al. Arcface: Additive Angular Margin Loss for Deep Face Recognition[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019: 4690-4699. |
[16] | CAO Q, SHEN L, XIE W, et al. VGGFace2: A Dataset for Recognising Faces across Pose and Age[C]. IEEE Proceedings. Institute of Electrical and Electronics Engineers, 2018: 67-74. |
[17] | GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative Adversarial Networks[J]. Communications of the ACM, 2020, 63(11): 139-144. |
[18] | HO J, JAIN A, ABBEEL P. Denoising Diffusion Probabilistic Models[C]. Proceedings of the 34th International Conference on Neural Information Processing Systems, 2020: 6840-6851. |
[19] | SONG J, MENG C, ERMON S. Denoising Diffusion Implicit Models[C]. International Conference on Learning Representations, 2021: 1-22. |
[20] | YANG H, HUANG D, WANG Y, et al. Learning Face Age Progression: A Pyramid Architecture of GANs[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 31-39. |
[21] | LIU Y, LI Q, SUN Z. Attribute-Aware Face Aging with Wavelet-Based Generative Adversarial Networks[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019: 11877-11886. |
[22] | SONG J, ZHANG J, GAO L, et al. Dual Conditional GANs for Face Aging and Rejuvenation[C]. International Joint Conference on Artificial Intelligence, 2018: 899-905. |
[23] | SONG J, ZHANG J, GAO L, et al. AgeGAN++: Face Aging and Rejuvenation with Dual Conditional GANs[J]. IEEE Transactions on Multimedia, 2022, 24(2): 791-804. |
[24] | YANG H, HUANG D, WANG Y, et al. Learning Continuous Face Age Progression: A Pyramid of GANs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 43(2): 499-515. |
[25] | HELJAKKA A, SOLIN A, KANNALA J. Recursive Chaining of Reversible Image-to-image Translators for Face Aging[C]. Advanced Concepts for Intelligent Vision Systems, 2018: 309-320. |
[26] | HUANG Z, CHEN S, ZHANG J, et al. PFA-GAN: Progressive Face Aging with Generative Adversarial Network[J]. IEEE Transactions on Information Forensics and Security, 2021, 16(4): 2031-2045. |
[27] | Antipov G, Baccouche M, Dugelay J L. Face Aging with Conditional Generative Adversarial Networks[C]. IEEE International Conference on Image Processing, 2017: 2089-2093. |
[28] | Wang Z, Tang X, Luo W, et al. Face Aging with Identity-Preserved Conditional Generative Adversarial Networks[C]. IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7939-7947. |
[29] | LI P, HUANG H, HU Y, et al. Hierarchical Face Aging through Disentangled Latent Characteristics[C]. Proceedings of the European Conference on Computer Vision, 2020: 86-101. |
[30] | ZHAO J, CHENG Y, CHENG Y, et al. Look across Elapse: Disentangled Representation Learning and Photorealistic Cross-age Face Synthesis for Age-invariant Face Recognition[C]. Proceedings of the AAAI conference on Artificial Intelligence, 2019: 9251-9258. |
[31] | JEON S, LEE P, HONG K, et al. Continuous Face Aging Generative Adversarial Networks[C]. Proceedings of the IEEE International Conference on Acoustics, 2021: 1995-1999. |
[32] | MAKHMUDKHUJAEV F, HONG S, PARK I K. Re-aging Gan: Toward Personalized Face Age Transformation[C]. Proceedings of the IEEE International Conference on Computer Vision, 2021: 3908-3917. |
[33] | GOMEZ-TRENADO G, LATHUILIÈRE S, MESEJO P, et al. Custom Structure Preservation in Face Aging[C]. European Conference on Computer Vision, 2022: 565-580. |
[34] | BAHDANAU D, CHO K H, BENGIO Y. Neural Machine Translation by Jointly Learning to Align and Translate[C]. International Conference on Learning Representations, 2015: 1-15. |
[35] | LI Q, LIU Y, SUN Z. Age progression and regression with spatial attention modules[C]. Proceedings of the AAAI conference on artificial intelligence, 2020: 11378-11385. |
[36] | KWAK J, HAN D K, KO H. CAFE-GAN: Arbitrary Face Attribute Editing with Complementary Attention Feature[C]. European Conference on Computer Vision, 2020: 524-540. |
[37] | ZHU H, HUANG Z, SHAN H, et al. Look Globally, Age Locally: Face Aging with an Attention Mechanism[C]. International Conference on Acoustics, Speech and Signal Processing, 2020: 1963-1967. |
[38] | SHI C, ZHANG J, YAO Y, et al. CAN-GAN: Conditioned-attention Normalized GAN for Face Age Synthesis[J]. Pattern Recognition Letters, 2020, 138(2): 520-526. |
[39] | LIU Y, LI Q, SUN Z, et al. A3GAN: an Attribute-aware Attentive Generative Adversarial Network for Face Aging[J]. IEEE Transactions on Information Forensics and Security, 2021, 16(2): 2776-2790. |
[40] | CHANDALIYA P K, NAIN N. AW-GAN: Face Aging and Rejuvenation Using Attention with Wavelet GAN[J]. Neural Computing and Applications, 2023, 35(3): 2811-2825. |
[41] | KARRAS T, LAINE S, AILA T. A Style-based Generator Architecture for Generative Adversarial Networks[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019: 4401-4410. |
[42] | HE S, LIAO W, YANG M Y, et al. Disentangled Lifespan Face Synthesis[C]. Proceedings of the IEEE International Conference on Computer Vision, 2021: 3877-3886. |
[43] | ALALUF Y, PATASHNIK O, COHEN-OR D. Only a Matter of Style: Age Transformation Using a Style-based Regression Model[J]. ACM Transactions on Graphics, 2021, 40(4): 1-12. |
[44] | LIU L, YU H, WANG S, et al. Learning Shape and Texture Progression for Young Child Face Aging[J]. Signal Processing: Image Communication, 2021, 93(116): 1-10. |
[45] | MA W, ZHOU Y, HE J. Semi-supervised Face Aging and Rejuvenating[J]. Journal of Electronic Imaging, 2021, 30(2): 023003-023003. |
[46] | RADFORD A, KIM J W, HALLACY C, et al. Learning Transferable Visual Models from Natural Language Supervision[C]. International Conference on Machine Learning, 2021: 8748-8763. |
[47] | CHEN X, LATHUILIÈRE S. Face Aging via Diffusion-based Editing[C]. British Machine Vision Conference, 2023: 1-13. |
[48] | LI P, WANG R, HUANG H, et al. Pluralistic Aging Diffusion Autoencoder[C]. Proceedings of the IEEE International Conference on Computer Vision, 2023: 22613-22623. |
[49] | Banerjee S, Mittal G, Joshi A, et al. Identity-Aware Facial Age Editing Using Latent Diffusion[J]. IEEE Transactions on Biometrics, Behavior, and Identity Science, 2024, 6(4): 443-457 |
[50] | MOSCHOGLOU S, PAPAIOANNOU A, SAGONAS C, et al. Agedb: the First Manually Collected, in-the-wild Age Database[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2017: 51-59. |
[51] | ROMBACH R, BLATTMANN A, LORENZ D, et al. High-resolution Image Synthesis with Latent Diffusion Models[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2022: 10684-10695. |
[52] | Hou C, Wei G, Chen Z. High-Fidelity Diffusion-Based Image Editing[C]. Proceedings of the AAAI Conference on Artificial Intelligence, 2024: 2184-2192. |
[53] | Parihar R, Sachidanand V S, Mani S, et al. PreciseControl: Enhancing Text-to-Image Diffusion Models with Fine-Grained Attribute Control[C]. European Conference on Computer Vision, 2025: 469-487. |
[1] | MA Qiuping, ZHANG Qi, ZHAO Xiaofan. Review of Research on Chart Question Answering [J]. Frontiers of Data and Computing, 2025, 7(1): 19-37. |
[2] | SHUI Yingyi, ZHANG Qi, LI Gen, ZHANG Shihao, WU Shang. A Review of Research on Social Network Influence Prediction Based on Multi-Class Features [J]. Frontiers of Data and Computing, 2025, 7(1): 2-18. |
[3] | LU Chenghao,CHEN Xiuhong. IPDFF: Reconstructed Surface Network Based on Implicit Partition Learning Deep Feature Fusion [J]. Frontiers of Data and Computing, 2024, 6(6): 19-31. |
[4] | WEI Yijin,FAN Jingchao. Classification Model of Agricultural Science and Technology Policies Based on Improved BERT-BiGRU-Attention [J]. Frontiers of Data and Computing, 2024, 6(6): 53-61. |
[5] | HE Wentong,LUO Ze. Object Detection with Federated Learning for Wildlife Camera Trap Images [J]. Frontiers of Data and Computing, 2024, 6(6): 85-96. |
[6] | YAN Zhiyu, RU Yiwei, SUN Fupeng, SUN Zhenan. Research on Video Behavior Recognition Method with Active Perception Mechanism [J]. Frontiers of Data and Computing, 2024, 6(5): 66-79. |
[7] | LIAO Libo, WANG Shudong, SONG Weimin, ZHANG Zhaoling, LI Gang, HUANG Yongsheng. The Study of Jet Tagging Algorithm Based on DeepSets at CEPC [J]. Frontiers of Data and Computing, 2024, 6(3): 108-115. |
[8] | YAN Jin, DONG Kejun, LI Hongtao. A Deep Web Tracker Detection Method with Coordinated Semantic and Co-Occurrence Features [J]. Frontiers of Data and Computing, 2024, 6(3): 127-138. |
[9] | KOU Dazhi. Automatic Teeth Segmentation on Dental Panoramic Radiographs with Deep Learning [J]. Frontiers of Data and Computing, 2024, 6(3): 162-172. |
[10] | CAI Chengfei, LI Jun, JIAO Yiping, WANG Xiangxue, GUO Guanchen, XU Jun. Progress and Challenges of Medical Multimodal Data Fusion Methods Based on Deep Learning in Oncology [J]. Frontiers of Data and Computing, 2024, 6(3): 3-14. |
[11] | ZHENG Yinuo, SUN Muyi, ZHANG Hongyun, ZHANG Jing, DENG Tianzheng, LIU Qian. Application of Deep Learning in Dental Implant Imaging: Research Progress and Challenges [J]. Frontiers of Data and Computing, 2024, 6(3): 41-49. |
[12] | YUAN Jialin, OUYANG Rushan, DAI Yi, LAI Xiaohui, MA Jie, GONG Jingshan. Assessing the Clinical Utility of a Deep Learning-Based Model for Calcification Recognition and Classification in Mammograms [J]. Frontiers of Data and Computing, 2024, 6(2): 68-79. |
[13] | LI Haopeng, ZHOU Wanting, CHEN Yu, ZHANG Man. Domain Independent Cycle-GAN for Cross Modal Medical Image Generation [J]. Frontiers of Data and Computing, 2024, 6(2): 80-88. |
[14] | WANG Ziyuan, WANG Guozhong. Application of Improved Lightweight YOLOv5 Algorithm in Pedestrian Detection [J]. Frontiers of Data and Computing, 2023, 5(6): 161-172. |
[15] | JU Jiaji, HUANG Bo, ZHANG Shuai, GUO Ruyan. A Dual-Channel Sentiment Analysis Model Integrating Sentiment Lexcion and Self-Attention [J]. Frontiers of Data and Computing, 2023, 5(4): 101-111. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||