Frontiers of Data and Computing ›› 2024, Vol. 6 ›› Issue (5): 1-12.
CSTR: 32002.14.jfdc.CN10-1649/TP.2024.05.001
doi: 10.11871/jfdc.issn.2096-742X.2024.05.001
Previous Articles Next Articles
LONG Chun1,*(),LI Lisha1,2,LI Jing1,YANG Fan1,WEI Jinxia1,Fu Yuhao1
Received:
2024-08-13
Online:
2024-10-20
Published:
2024-10-21
LONG Chun, LI Lisha, LI Jing, YANG Fan, WEI Jinxia, Fu Yuhao. Review of Research on Secure Inference in Machine Learning[J]. Frontiers of Data and Computing, 2024, 6(5): 1-12, https://cstr.cn/32002.14.jfdc.CN10-1649/TP.2024.05.001.
Table 1
Comparison of secure inference schemes applied to traditional machine learning"
方案 | 机器学习方法 | 密码学技术 | 运算时间 | 通信开销 | 是否支持扩展为恶意安全假设 |
---|---|---|---|---|---|
[39] | 岭回归 | GC+HE | 很大 | 很大 | √ |
[40] | 线性回归 | GC+HE | 很大 | — | √ |
[41] | 支持向量机 | HE | 较大 | — | |
[42] | 支持向量机 | HE | 较大 | — | |
[43] | 朴素贝叶斯分类 | HE | 较小 | — | |
[44] | 超平面决策、朴素贝叶斯、决策树 | HE | 较大 | 较大 | |
[45] | 决策树、随机森林 | HE+OT | 较小 | 较小 | √ |
[46] | 随机森林 | HE | 较大 | 较大 | |
[47] | 决策树 | SS+OT | 较小 | 较大 | |
[48] | 决策树 | HE/GC/OT | — | — | |
[49] | 决策树 | SS+OT+GC | 较小 | 较大 | |
[50] | 决策树 | SS+OT+GC | 较小 | 较大 | √ |
[4] | 决策树 | HE | 较大 | 较小 | |
[5] | 决策树 | OT+SS | 较小 | 较小 |
Table 2
Comparison of secure inference schemes applied to deep learning"
方案 | 神经网络规模 | 数据集规模 | 密码学技术 | 通信开销 | 运算时间 |
---|---|---|---|---|---|
crypto-nets[ | 小 | — | Leveled-FHE | — | — |
CryptoNets[ | 小 | MNIST | Leveled-FHE | 很大 | 很大 |
MiniONN[ | 小 | MNIST | HE+GC+SS | 较大 | 较大 |
Chameleon[ | 小 | MNIST、CIFAR-10 | GC+SS | 较大 | 较大 |
Gazelle[ | 小 | MNIST、CIFAR-10 | HE+GC+SS | 较小 | 较小 |
Delphi[ | ResNet32 | CIFAR-10、CIFAR-100 | HE+GC+SS+OT | 较小 | 较小 |
CrypTFlow2[ | SqNet、RN50、DNet121 | ImageNet | SS+HE+OT | 较小 | 较小 |
Cheetah[ | SqNet、RN50、DNet121 | ImageNet | SS+HE+OT | 较小 | 较小 |
[1] | YAO A C. Protocols for secure computations[C]// 23rd annual symposium on foundations of computer science (sfcs 1982). IEEE, 1982: 160-164. |
[2] | SONG L, LIN G, WANG J, et al. Sok: Training machine learning models over multiple sources with privacy preservation[J]. arXiv preprint arXiv: 2012.03 386, 2020. |
[3] | 郭娟娟, 王琼霄, 许新, 等. 安全多方计算及其在机器学习中的应用[J]. 计算机研究与发展, 2021, 58(10): 2163-2186. |
[4] | HAO Y, QIN B, SUN Y. Privacy-preserving decision-tree evaluation with low complexity for communication[J]. Sensors, 2023, 23(5): 2624. |
[5] | JI K, ZHANG B, LU T, et al. UC Secure private branching program and decision tree evaluation[J]. IEEE Transactions on Dependable and Secure Computing, 2022, 20(4): 2836-2848. |
[6] | CHEN X, CHEN X, DONG Y, et al. Roger: A round optimized gpu-friendly secure inference framework[C]// ICC 2024-IEEE International Conference on Communications. IEEE, 2024: 61-66. |
[7] | FAN T, CHEN X, DONG Y, et al. Comet: Communication-efficient batch secure three-party neural network inference with client-aiding[C]// ICC 2024-IEEE International Conference on Communications. IEEE, 2024: 752-757. |
[8] | FENG Q, HE D, LIU Z, et al. SecureNLP: A system for multi-party privacy-preserving natural language processing[J]. IEEE Transactions on Information Forensics and Security, 2020, 15: 3709-3721. |
[9] | HUANG Z, LU W, HONG C, et al. Cheetah: Lean and fast secure {Two-Party} deep neural network inference[C]// 31st USENIX Security Symposium (USENIX Security 22). 2022: 809-826. |
[10] | DONG Y, CHEN X, JING W, et al. Meteor: improved secure 3-party neural network inference with reducing online communication costs[C]// Proceedings of the ACM Web Conference 2023. 2023: 2087-2098. |
[11] | DONG Y, CHEN X, SONG X, et al. FLEXBNN: fast private binary neural network inference with flexible bit-width[J]. IEEE Transactions on Information Forensics and Security, 2023, 18: 2382-2397. |
[12] | LU Y, ZHANG B, REN K. Maliciously secure mpc from semi-honest 2 pc in the server-aided model[J]. IEEE Transactions on Dependable and Secure Computing, 2024 (4): 3109-3125. |
[13] | LI Y, XU W. PrivPy: General and scalable privacy-preserving data mining[C]// Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2019: 1299-1307. |
[14] | SONG L, WANG J, WANG Z, et al. Pmpl: A robust multi-party learning framework with a privileged party[C]// Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security. 2022: 2689-2703. |
[15] | MA J, ZHENG Y, FENG J, et al. {SecretFlow-SPU}: A performant and {user-friendly} framework for {privacy-preserving} machine learning[C]// 2023 USENI-X Annual Technical Conference (USENIX ATC 23). 2023: 17-33. |
[16] | 谭作文, 张连福. 机器学习隐私保护研究综述[J]. 软件学报, 2020, 31(7): 2127-2156. |
[17] | HAZAY C, VENKITASUBURAMANIAM M, WE- ISS M. The price of active security in cryptographic protocols[C]// Annual International Conference on the Theory and Applications of Cryptographic Techniqu-es. Cham: Springer International Publishing, 2020: 1 84-215. |
[18] | RABIN M O. How to exchange secrets with oblivious transfer[J]. IACR Cryptol. ePrint Arch, 2005 ( 2005): 187. |
[19] | 曲亚东, 侯紫峰, 韦卫. 基于不经意传输的合同签订协议[J]. 计算机研究与发展, 2003, (4): 615-619. |
[20] | 陈晓洪. 基于安全多方计算的电子投票系统应用研究[D]. 南京理工大学, 2010. |
[21] | 查俊. 安全多方计算在密钥协商中的应用研究[D]. 解放军信息工程大学, 2012. |
[22] | 李宗育, 桂小林, 顾迎捷, 等. 同态加密技术及其在云计算隐私保护中的应用[J]. 软件学报, 2018, 29(7):1830-1851. |
[23] | ACAR A, AKSU H, ULUAGAC A S, et al. A survey on homomorphic encryption schemes: Theory and implementation[J]. ACM Computing Surveys (Csur), 2018, 51(4): 1-35. |
[24] | RIVEST R L, SHAMIR A, ADLEMAN L. A method for obtaining digital signatures and public-key cryptosystems[J]. Communications of the ACM, 1978, 21(2): 120-126. |
[25] | ElGAMAL T. A public key cryptosystem and a signature scheme based on discrete logarithms[J]. IEEE transactions on information theory, 1985, 31(4): 469-472. |
[26] | PAILLIER P. Public-key cryptosystems based on composite degree residuosity classes[C]// International c- onference on the theory and applications of cryptographic techniques. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999: 223-238. |
[27] | BONEH D, GOH E J, NISSIM K. Evaluating 2-DNF formulas on ciphertexts[C]// Theory of Cryptography: Second Theory of Cryptography Conference, TCC 2005, Cambridge, MA, USA, February 10-12, 2005. Proceedings 2. Springer Berlin Heidelberg, 2005: 325-341. |
[28] | GENTRY C. Fully homomorphic encryption using ideal lattices[C]// Proceedings of the forty-first annual ACM symposium on Theory of computing. 2009: 169-178. |
[29] | SMART N P, VERCAUTEREN F. Fully homomorphic encryption with relatively small key and ciphertext sizes[C]// International Workshop on Public Key Cryptography. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010: 420-443. |
[30] | VAN Dijk M, GENTRY C, HALEVI S, et al. Fully homomorphic encryption over the integers[C]// Adva-nces in Cryptology-EUROCRYPT 2010: 29th Annual International Conference on the Theory and Applications of Cryptographic Techniques, French Riviera, May 30-June 3, 2010. Proceedings 29. Springer Berlin Heidelberg, 2010: 24-43. |
[31] | CORON J S, MANDAL A, NACCACHE D, et al. Fully homomorphic encryption over the integers with shorter public keys[C]// Annual Cryptology Confere-nce. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011: 487-504. |
[32] | SHAMIR A. How to share a secret[J]. Communications of the ACM, 1979, 22(11): 612-613. |
[33] | BEAVER D. Efficient multiparty protocols using circuit randomization[C]// Advances in Cryptology-CR-YPTO’91: Proceedings 11. Springer Berlin Heidelb-erg, 1992: 420-432. |
[34] | BLAKLEY G R. Safeguarding cryptographic keys[C]// Managing requirements knowledge, international workshop on. IEEE Computer Society, 1979: 313-313. |
[35] | GALTON F. Regression towards mediocrity in hereditary stature[J]. The Journal of the Anthropological Institute of Great Britain and Ireland, 1886, 15: 246-263. |
[36] | CORTES C, VAPNIK V. Support-vector networks[J]. Machine Learning, 1995, 20(3): 273-297. |
[37] | QUINLAN J R. C4.5: Programs for machine learning[M]. Morgan Kaufmann, 1993. |
[38] | LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. |
[39] | NIKOLAENKO V, WEINSBERG U, IOANNIDIS S, et al. Privacy-preserving ridge regression on hund-reds of millions of records[C]// 2013 IEEE symposium on security and privacy. IEEE, 2013: 334-348. |
[40] | GASCÓN A, SCHOPPMANN P, BALLE B, et al. Secure linear regression on vertically partitioned datasets[J]. IACR Cryptol. ePrint Arch. 2016 (2016): 892. |
[41] | RAHULAMATHAVAN Y, PHAN R C W, VELURU S, et al. Privacy-preserving multi-class support vector machine for outsourcing the data classification in cloud[J]. IEEE Transactions on Dependable and Secure Computing, 2013, 11(5): 467-479. |
[42] | RAHULAMATHAVAN Y, VELURU S, PHAN R C W, et al. Privacy-preserving clinical decision support system using gaussian kernel-based classification[J]. IEEE journal of biomedical and health informatics, 2013, 18(1): 56-66. |
[43] | LIU X, LU R, MA J, et al. Privacy-preserving patient-centric clinical decision support system on naive Ba- yesian classification[J]. IEEE journal of biomedical and health informatics, 2015, 20(2): 655-668. |
[44] | BOST R, POPA R A, TU S, et al. Machine learning classification over encrypted data[C]// Network and Distributed System Security Symposium. 2014. DOI:10.14722/ndss.2015.23241. |
[45] | WU D J, FENG T, NAEHRIG M, et al. Privately evaluating decision trees and random forests[J]. Proceedings on Privacy Enhancing Technologies, 2016, (4): 335-355. |
[46] | BACKES M, BERRANG P, BIEG M, et al. Identifying personal DNA methylation profiles by genotype inference[C]// 2017 IEEE symposium on security and privacy (SP). IEEE, 2017: 957-976. |
[47] | DE COCK M, DOWSLEY R, HORST C, et al. Efficient and private scoring of decision trees, support vector machines and logistic regression models based on pre-computation[J]. IEEE Transactions on Dependable and Secure Computing, 2017, 16(2): 217-230. |
[48] | KISS Á, NADERPOUR M, LIU J, et al. SoK: Modular and efficient private decision tree evaluation[J]. Proceedings on Privacy Enhancing Technologies, 2019, (2): 187-208. |
[49] | TUENO A, KERSCHBAUM F, KATZENBEISSER S. Private evaluation of decision trees using sublinear cost[J]. Proceedings on Privacy Enhancing Technologies, 2019(1): 266-286. |
[50] | MA J P K, TAI R K H, ZHAO Y, et al. Let’s stride blindfolded in a forest: sublinear multi-client decision trees evaluation[C]. Proceedings 2021 Network and Distributed System Security Symposium, 2021. DOI:10.14722/ndss.2021.23166. |
[51] | XIE P, BILENKO M, FINLEY T, et al. Crypto-nets: Neural networks over encrypted data[J]. arXiv preprint arXiv:1412.6181, 2014. |
[52] | GILAD-BACHRACH R, DOWLIN N, LAINE K, et al. Cryptonets: Applying neural networks to encrypted data with high throughput and accuracy[C]// International conference on machine learning. PMLR, 20 16: 201-210. |
[53] | LIU J, JUUTI M, LU Y, et al. Oblivious neural network predictions via minionn transformations[C]// Proceedings of the 2017 ACM SIGSAC conference on computer and communications security. 2017: 619-631. |
[54] | RIAZI M S, WEINERT C, TKACHENKO O, et al. Chameleon: A hybrid secure computation framework for machine learning applications[C]// Proceedings of the 2018 on Asia conference on computer and communications security. 2018: 707-721. |
[55] | JUVEKAR C, VAIKUNTANATHAN V, CHANDRA-KASAN A. {GAZELLE}:A low latency framework for secure neural network inference[C]// 27th USENIX security symposium (USENIX security 18). 2018: 1651-1669. |
[56] | MISHRA P, LEHMKUHL R, SRINIVASAN A, et al. Delphi: A Cryptographic Inference Service for Neural Networks[C]// USENIX Security Symposium, 2020: 2505-2522. |
[57] | RATHEE D, RATHEE M, KUMAR N, et al. Cryptflow2: Practical 2-party secure inference[C]//Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security. 2020: 325-342. |
[58] | BAI J, SONG X, ZHANG X, et al. Mostree: malicious secure private decision tree evaluation with sublinear communication[C]// Proceedings of the 39th Annual Computer Security Applications Conference. 2023: 799-813. |
[59] | HAZAY C, ISHAI Y, MARCEDONE A, et al. LevioSA: Lightweight secure arithmetic computation[C]// Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security. 2019: 327-344. |
[60] | LEHMKUHL R, MISHRA P, SRINIVASAN A, et al. Muse: Secure inference resilient to malicious clients[C]// 30th USENIX Security Symposium (USENIX Security 21). 2021: 2201-2218. |
[61] | CHANDRAN N, GUPTA D, OBBATTU S L B, et al. {SIMC}:{ML} inference secure against malicious clients at {Semi-Honest} cost[C]// 31st USENIX Security Symposium (USENIX Security 22). 2022: 1361-1378. |
[62] | DONG C, WENG J, LIU J N, et al. Fusion: Efficient and secure inference resilient to malicious servers[C]. Proceedings 2023 Network and Distributed System Security Symposium, 2023. DOI:10.14722/ndss.2023.23199. |
[63] | 贾轩, 白玉真, 马智华. 隐私计算应用场景综述[J]. 信息通信技术与政策, 2022, (5): 45-52. |
[64] | 胡浩. 隐私计算产业的发展及金融行业应用[J]. 银行家, 2023, (3): 108-110. |
[65] | 郑灏. 隐私计算在金融行业数据融合场景中的应用探析[J]. 中国金融电脑, 2022, (6): 90-91. |
[66] | 马龙, 陈奕博. 基于技术的治理: 隐私计算技术赋能政府数据开放的价值与路径研究[J]. 中国行政管理, 2023, 39(9): 105-113. |
[67] | 凡航, 徐葳, 范晓昱, 等. 隐私计算在新型电力系统中的应用分析与展望[J]. 电力系统自动化, 2023, 47(19): 187-199. |
[68] | 肖霞. 基于隐私计算的药物—药物相互作用预测方法研究[D]. 湖南大学, 2023. |
[69] | 辛均益, 陈如梵, 王林, 等. 生物医学大数据中的隐私计算[J]. 医学信息学杂志, 2022, 43(10): 2-7. |
[1] | GUO Xuebing, ZHU Xiaojie, TANG Xinzhai, YANG Gang, HOU Yanfei, HE Honglin. Study on Integration Method of Algorithm Model Based on Big Data Pipeline— Taking Tree Biomass Inversion Based on Machine Learning Method and LiDAR Data as an Example [J]. Frontiers of Data and Computing, 2024, 6(4): 96-105. |
[2] | HE Ruilin, YANG Xinyi, SUN Hongzan, LI Chen. The Latest Development and Prospects of Histopathological Image Analysis Methods Based on Graph Features [J]. Frontiers of Data and Computing, 2024, 6(2): 101-116. |
[3] | YE Xu, DU Yi, CUI Wenjuan, SHEN Junjie, XIE Jing, WANG Ludi. Application of Machine Learning Technology in the Field of Eye Health [J]. Frontiers of Data and Computing, 2024, 6(2): 117-133. |
[4] | SHEN Zhihao, LI Na, YIN Shihao, DU Yi, HU Lianglin. Airfare Price Prediction Based on TPA-Transformer [J]. Frontiers of Data and Computing, 2023, 5(6): 115-125. |
[5] | WEI Ting, PENG Liang, NIU Tie, ZHANG Honghai. Detection and Root Cause Analysis of HPC Failure Jobs Based on Feature Analysis [J]. Frontiers of Data and Computing, 2023, 5(6): 94-103. |
[6] | SUN Yifan, ZHANG Rui, TAO Yang, GAO Birou, QIN Shihan, AN Chao. A Survey on Local Differential Privacy [J]. Frontiers of Data and Computing, 2023, 5(5): 74-97. |
[7] | TANG Shiyuan, YUAN Ye. Privacy-Preserving Graph Query Based on Secure Multi-Party Computation [J]. Frontiers of Data and Computing, 2023, 5(5): 98-106. |
[8] | TIAN Yiqing, CHENG Xi, FENG Bojing. A Review of Computational Models for Corporate Credit Rating [J]. Frontiers of Data and Computing, 2023, 5(4): 139-153. |
[9] | CHEN Meilin, LIU Duanyang, XU Liming, WANG Yang. A Review of Force Field Models Based on Machine Learning [J]. Frontiers of Data and Computing, 2023, 5(4): 27-37. |
[10] | LIU Duanyang, WEI Zhongming. Application of Supervised Learning Algorithms in Materials Science [J]. Frontiers of Data and Computing, 2023, 5(4): 38-47. |
[11] | LI Yan,HE Hongbo,WANG Runqiang. A Survey of Research on Microblog Popularity Prediction [J]. Frontiers of Data and Computing, 2023, 5(2): 119-135. |
[12] | GAO Tian,ZHU Jiaojun,ZHANG Jinxin,SUN Yirong,YU Fengyuan,TENG Dexiong,LU Deliang,YU Lizhong,WANG Zongguo. Estimation of Carbon Flux of a Temperate Forest Ecosystem Based on Next-Generation Information Technologies [J]. Frontiers of Data and Computing, 2023, 5(2): 60-72. |
[13] | WANG Fan,FENG Liqiang,CAO Rongqiang. Design and Application of Big Data-Driven Ocean Artificial Intelligence Service Platform [J]. Frontiers of Data and Computing, 2023, 5(2): 73-85. |
[14] | ZHAO Zhongbin,CAI Manchun,LU Tianliang. Network Malicious Traffic Detection Incorporating Multi-Head Attention Mechanism [J]. Frontiers of Data and Computing, 2022, 4(5): 60-67. |
[15] | WEI Ting,ZHANG Honghai,LIN Xiaoli,ZHANG Leilei,WANG Yan,JIA Jinfeng. Predictive Model of the Revisit Behavior of Cloud Service Site Users [J]. Frontiers of Data and Computing, 2022, 4(3): 124-130. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||