Frontiers of Data and Computing ›› 2023, Vol. 5 ›› Issue (4): 27-37.
CSTR: 32002.14.jfdc.CN10-1649/TP.2023.04.003
doi: 10.11871/jfdc.issn.2096-742X.2023.04.003
• Special Issue: Basic Research • Previous Articles Next Articles
CHEN Meilin1,2(),LIU Duanyang3,XU Liming1,2,WANG Yang1,*()
Received:
2023-06-01
Online:
2023-08-20
Published:
2023-08-23
CHEN Meilin, LIU Duanyang, XU Liming, WANG Yang. A Review of Force Field Models Based on Machine Learning[J]. Frontiers of Data and Computing, 2023, 5(4): 27-37, https://cstr.cn/32002.14.jfdc.CN10-1649/TP.2023.04.003.
Table 1
Comparison of GDML and sGDML"
GDML | sGDML | |||
---|---|---|---|---|
Force | Energy | Force | Energy | |
Benzene | 0.195 | 0.07 | 0.16 | 0.07 |
Uracil | 0.663 | 0.142 | 0.663 | 0.142 |
Naphthalene | 0.222 | 0.12 | 0.113 | 0.116 |
Aspirin | 0.984 | 0.264 | 0.679 | 0.194 |
Salicylic Acid | 0.829 | 0.178 | 0.829 | 0.178 |
Malonaldehyde | 0796 | 0.157 | 0.414 | 0.098 |
Ethanol | 0.792 | 0.154 | 0.335 | 0.072 |
Toluene | 0.425 | 0.125 | 0.142 | 0.097 |
Paracetamol | 1.036 | 0.274 | 0.491 | 0.153 |
Azobenzene | 0.78 | 0.353 | 0.409 | 0.092 |
Table 2
Comparison of SchNet and sGDML"
SchNet | sGDML | |||
---|---|---|---|---|
Force | Energy | Force | Energy | |
Benzene | 0.31 | 0.08 | 0.16 | 0.07 |
Uracil | 0.56 | 0.17 | 0.663 | 0.142 |
Naphthalene | 0.58 | 0.16 | 0.113 | 0.116 |
Aspirin | 0.135 | 0.37 | 0.679 | 0.194 |
Salicylic acid | 0.85 | 0.2 | 0.829 | 0.178 |
Malonaldehyde | 0.66 | 0.13 | 0.414 | 0.098 |
Ethanol | 0.39 | 0.08 | 0.335 | 0.072 |
Toluene | 0.57 | 0.12 | 0.142 | 0.097 |
[1] |
LIU D, XU L, LIN X, et al. Machine Learning for Semi-conductors[J]. Chip, 2022, 1(4): 100033.
doi: 10.1016/j.chip.2022.100033 |
[2] |
FUKUHARA S, SHIMOJO F, SHIBUTA Y. Confor-mation and catalytic activity of nickel-carbon cluster for ethanol dissociation in carbon nanotube synthesis: Ab initio molecular dynamics simulation[J]. Chemical Physics Letters, 2017, 679: 164-171.
doi: 10.1016/j.cplett.2017.04.086 |
[3] |
CHMIELA S, SAUCEDA H E, MÜLLER K R, et al. Tow-ards exact molecular dynamics simulations with machine-learned force fields[J]. Nature communications, 2018, 9(1): 3887.
doi: 10.1038/s41467-018-06169-2 |
[4] |
TUCKERMAN M E. molecular dynamics: basic conc-epts, current trends and novel applications[J]. Journal of Physics Condensed Matter, 14(50): R1297-R1355.
doi: 10.1088/0953-8984/14/50/202 |
[5] | CHU Z M, XIAO D J, QIAO Y S, et al. Machine Learn-ing Applications for Particle Accelerators[J]. Frontiers of Data and Computing, 2019, 1(2): 110-120. |
[6] |
UNKE O T, CHMIELA S, SAUCEDA H E, et al. Mach-ine learning force fields[J]. Chemical Reviews, 2021, 121(16): 10142-10186.
doi: 10.1021/acs.chemrev.0c01111 |
[7] |
BARTÓK A P, PAYNE M C, KONDOR R, et al. Gaus-sian approximation potentials: The accuracy of quantum mechanics, without the electrons[J]. Physical review letters, 2010, 104(13): 136403.
doi: 10.1103/PhysRevLett.104.136403 |
[8] | UNKE O T, MEUWLY M. PhysNet: A neural network for predicting energies, forces, dipole moments, and partial charges[J]. Journal of chemical theory and compu-tation, 2019, 15(6): 3678-3693. |
[9] |
BEHLER J, PARRINELLO M. Generalized neural-network representation of high-dimensional potential-energy surfaces[J]. Physical review letters, 2007, 98(14): 146401.
doi: 10.1103/PhysRevLett.98.146401 |
[10] |
ZHANG L, HAN J, WANG H, et al. Deep potential molecular dynamics: a scalable model with the accuracy of quantum mechanics[J]. Physical review letters, 2018, 120(14): 143001.
doi: 10.1103/PhysRevLett.120.143001 |
[11] |
STÖHR M, MEDRANO SANDONAS L, TKATC-HENKO A. Accurate many-body repulsive potentials for density-functional tight binding from deep tensor neural networks[J]. The Journal of Physical Chemistry Letters, 2020, 11(16): 6835-6843.
doi: 10.1021/acs.jpclett.0c01307 |
[12] | CHMIELA S, VASSILEV-GALINDO V, UNKE O T, et al. Accurate global machine learning force fields for molecules with hundreds of atoms[J]. Science Advances, 2023, 9(2): eadf0873. |
[13] | GUO J L, WANG Z G, WANG Y G, et al. A Review of Material Research and Development Methods Based on Computer Technology[J]. Frontiers of Data and Comp-uting, 2021, 3(2): 120-132. |
[14] | WANG Z G, WAN M, CHEN Z Y, et al. Research and Application of a Data-Driven Intelligent Design Platform for Materials[J]. Frontiers of Data and Computing, 2023, 5(2): 86-96. |
[15] |
SZE V, CHEN Y H, YANG T J, et al. Efficient processing of deep neural networks: A tutorial and survey[J]. Proceedings of the IEEE, 2017, 105(12): 2295-2329.
doi: 10.1109/JPROC.2017.2761740 |
[16] |
BARTÓK A P, KERMODE J, BERNSTEIN N, et al. Machine learning a general-purpose interatomic potential for silicon[J]. Physical Review X, 2018, 8(4): 041048.
doi: 10.1103/PhysRevX.8.041048 |
[17] |
SAUCEDA H E, VASSILEV-GALINDO V, CHMIELA S, et al. Dynamical strengthening of covalent and non-covalent molecular interactions by nuclear quantum effe-cts at finite temperature[J]. Nature Communications, 2021, 12(1): 442.
doi: 10.1038/s41467-020-20212-1 |
[18] |
SCHÜTT K T, ARBABZADAH F, CHMIELA S, et al. Quantum-chemical insights from deep tensor neural networks[J]. Nature communications, 2017, 8(1): 13890.
doi: 10.1038/ncomms13890 |
[19] | 申林, 贾璐阳, 汤典东, 等. 计算化学中的机器学习[J]. 中国科学:化学, 2022, 52(6): 858-868 |
[20] |
POLTAVSKY I, TKATCHENKO A. Machine learn-ing force fields: Recent advances and remaining challe-nges[J]. The Journal of Physical Chemistry Letters, 2021, 12(28): 6551-6564.
doi: 10.1021/acs.jpclett.1c01204 |
[21] |
WEI J, CHU X, SUN X Y, et al. Machine learning in materials science[J]. InfoMat, 2019, 1(3): 338-358.
doi: 10.1002/inf2.v1.3 |
[22] | TU Y Y, ZHENG Q J, ZHAO J. Research on Quantum Proton Coupled Charge Transfer Process Based on Deep Neural Network[J]. Frontiers of Data and Computing, 2023, 5(2): 37-49. |
[23] |
ROSENBERGER D, SMITH J S, GARCIA A E. Mod-eling of peptides with classical and novel machine learning force fields: A comparison[J]. The Journal of Physical Chemistry B, 2021, 125(14): 3598-3612.
doi: 10.1021/acs.jpcb.0c10401 |
[24] |
SMITH J S, NEBGEN B T, ZUBATYUK R, et al. Approaching coupled cluster accuracy with a general-purpose neural network potential through transfer lear-ning[J]. Nature communications, 2019, 10(1): 2903.
doi: 10.1038/s41467-019-10827-4 |
[25] |
SMITH J S, ISAYEV O, ROITBERG A E. ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost[J]. Chemical science, 2017, 8(4): 3192-3203.
doi: 10.1039/c6sc05720a pmid: 28507695 |
[26] |
SMITH J S, ZUBATYUK R, NEBGEN B, et al. The ANI-1ccx and ANI-1x data sets, coupled-cluster and density functional theory properties for molecules[J]. Scientific data, 2020, 7(1): 134.
doi: 10.1038/s41597-020-0473-z pmid: 32358545 |
[27] | HU W, SHUAIBI M, DAS A, et al. Forcenet: A graph neural network for large-scale quantum calculations[J]. arXiv preprint arXiv:2103.01436, 2021. |
[28] | CHMIELA S, TKATCHENKO A, SAUCEDA H E, et al. Machine learning of accurate energy-conserving molecular force fields[J]. Science advances, 2017, 3(5): e1603015. |
[29] |
CHMIELA S, SAUCEDA H E, POLTAVSKY I, et al. sGDML: Constructing accurate and data efficient mole-cular force fields using machine learning[J]. Computer Physics Communications, 2019, 240: 38-45.
doi: 10.1016/j.cpc.2019.02.007 |
[30] | GASTEIGER J, GROß J, GÜNNEMANN S. Directional message passing for molecular graphs[J]. arXiv preprint arXiv:2003.03123, 2020. |
[31] | GASTEIGER J, GIRI S, MARGRAF J T, et al. Fast and uncertainty-aware directional message passing for non-equilibrium molecules[J]. arXiv preprint arXiv: 2011.14115, 2020. |
[32] |
SCHÜTT K T, HESSMANN S S P, GEBAUER N W A, et al. SchNetPack 2.0: A neural network toolbox for atomistic machine learning[J]. The Journal of Chemical Physics, 2023, 158(14): 144801.
doi: 10.1063/5.0138367 |
[33] | SCHÜTT K, KINDERMANS P J, SAUCEDA FELIX H E, et al. Schnet: A continuous-filter convolutional neural network for modeling quantum interactions[J]. Advances in neural information processing systems, 2017, 30: 991-1001. |
[34] | ZENI C, ROSSI K, GLIELMO A, et al. On machine learning force fields for metallic nanoparticles[J]. Adv-ances in Physics: X, 2019, 4(1): 1654919. |
[35] |
ZHANG W, WENG M, ZHANG M, et al. Revealing Morphology Evolution of Lithium Dendrites by Large-Scale Simulation Based on Machine Learning Force Field[J]. Advanced Energy Materials, 2023, 13(4): 2202892.
doi: 10.1002/aenm.v13.4 |
[36] |
LI Z, MEIDANI K, YADAV P, et al. Graph neural net-works accelerated molecular dynamics[J]. The Journal of Chemical Physics, 2022, 156(14): 144103.
doi: 10.1063/5.0083060 |
[37] | KABYLDA A, VASSILEV-GALINDO V, CHMIELA S, et al. Towards linearly scaling and chemically accurate global machine learning force fields for large molecules[J]. arXiv preprint arXiv:2209.03985, 2022. |
[38] | SAUCEDA H E, GÁLVEZ-GONZÁLEZ L E, CHM-IELA S, et al. BIGDML: Towards Exact Machine Lear-ning Force Fields for Materials[J]. arXiv e-prints, 2021: arXiv: 2106.04229. |
[39] |
GASTEGGER M, SCHWIEDRZIK L, BITTERMANN M, et al. wACSF—Weighted atom-centered symmetry functions as descriptors in machine learning potentials[J]. The Journal of chemical physics, 2018, 148(24): 241709.
doi: 10.1063/1.5019667 |
[40] |
LUBBERS N, SMITH J S, BARROS K. Hierarchical modeling of molecular energies using a deep neural network[J]. The Journal of chemical physics, 2018, 148(24): 241715.
doi: 10.1063/1.5011181 |
[41] |
SCHÜTT K T, KESSEL P, GASTEGGER M, et al. Sch-NetPack: A deep learning toolbox for atomistic syste-ms[J]. Journal of chemical theory and computation, 2018, 15(1): 448-455.
doi: 10.1021/acs.jctc.8b00908 |
[42] |
SCHÜTT K T, SAUCEDA H E, KINDERMANS P J, et al. Schnet-a deep learning architecture for molecules and materials[J]. The Journal of Chemical Physics, 2018, 148 (24): 241722.
doi: 10.1063/1.5019779 |
[43] | BATTAGLIA P, PASCANU R, LAI M, et al. Interaction networks for learning about objects, relations and physics[J]. Advances in neural information processing systems, 2016, 29: 4509-4517. |
[44] |
XIE T, GROSSMAN J C. Crystal graph convolutional neural networks for an accurate and interpretable pre-diction of material properties[J]. Physical review letters, 2018, 120(14): 145301.
doi: 10.1103/PhysRevLett.120.145301 |
[45] | FU X, WU Z, WANG W, et al. Forces are not enough: Benchmark and critical evaluation for machine learning force fields with molecular simulations[J]. arXiv preprint arXiv:2210.07237, 2022. |
[46] |
GKEKA P, STOLTZ G, BARATI FARIMANI A, et al. Machine learning force fields and coarse-grained variables in molecular dynamics: application to materials and biological systems[J]. Journal of chemical theory and computation, 2020, 16(8): 4757-4775.
doi: 10.1021/acs.jctc.0c00355 pmid: 32559068 |
[47] |
MISHIN Y. Machine-learning interatomic potentials for materials science[J]. Acta Materialia, 2021, 214: 116980.
doi: 10.1016/j.actamat.2021.116980 |
[48] |
SCHMIDT J, MARQUES M R G, BOTTI S, et al. Recent advances and applications of machine learning in solid-state materials science[J]. Npj Computational Materials, 2019, 5(1): 83.
doi: 10.1038/s41524-019-0221-0 |
[49] |
MILARDOVICH D, WALDHOER D, JECH M, et al. Building robust machine learning force fields by composite Gaussian approximation potentials[J]. Solid-State Electronics, 2023, 200: 108529.
doi: 10.1016/j.sse.2022.108529 |
[50] |
SCHMITZ N F, MÜLLER K R, CHMIELA S. Alg-orithmic differentiation for automated modeling of machine learned force fields[J]. The Journal of Physical Chemistry Letters, 2022, 13(43): 10183-10189.
doi: 10.1021/acs.jpclett.2c02632 |
[51] |
LIAO K, DONG S, CHENG Z, et al. Combined frag-ment-based machine learning force field with classical force field and its application in the NMR calculations of macromolecules in solutions[J]. Physical Chemistry Chemical Physics, 2022, 24(31): 18559-18567.
doi: 10.1039/D2CP02192G |
[1] | MENG Zhe, YU Su. Taxi Demand Prediction Model Based on Spark and Improved BP Neural Network [J]. Frontiers of Data and Computing, 2023, 5(4): 112-126. |
[2] | TIAN Yiqing, CHENG Xi, FENG Bojing. A Review of Computational Models for Corporate Credit Rating [J]. Frontiers of Data and Computing, 2023, 5(4): 139-153. |
[3] | LIU Duanyang, WEI Zhongming. Application of Supervised Learning Algorithms in Materials Science [J]. Frontiers of Data and Computing, 2023, 5(4): 38-47. |
[4] | CHEN Dong, LI Ming, CHEN Shuwen. Hyperspectral Image Classification Method Combining Transformer and Multi-Layer Feature Aggregation [J]. Frontiers of Data and Computing, 2023, 5(3): 138-151. |
[5] | XU Songyuan,LIU Feng. ESDRec: A Data Recommendation Model for Earth Big Data Platform [J]. Frontiers of Data and Computing, 2023, 5(1): 55-64. |
[6] | SHI Xuemei,ZHU Keliang,ZHANG Xiangmin,ZHANG Shutao,CHEN Liangfeng. Occluded Face Inpainting Method Based on Generative Adversarial Networks [J]. Frontiers of Data and Computing, 2022, 4(4): 123-131. |
[7] | XIAO Nan,ZHOU Mingzhu,XING Jun,LUO Ze,LI Xiaohui. Authenticity Identification of Cigarettes Based on Attention Mechanism and High-resolution Network [J]. Frontiers of Data and Computing, 2021, 3(5): 118-129. |
[8] | ZHANG Meng,LI Jian. Bird Audio Data Preprocessing Method [J]. Frontiers of Data and Computing, 2021, 3(5): 130-140. |
[9] | ZHANG Chenyang,DU Yihua. A Survey on Short-text Generation Technology [J]. Frontiers of Data and Computing, 2021, 3(3): 111-125. |
[10] | CHEN Zijian,LI Jun,YUE Zhaojuan,ZHAO Zefang. Hybrid Recommendation Model Based on Autoencoder and Attribute Information [J]. Frontiers of Data and Computing, 2021, 3(3): 148-155. |
[11] | CHEN Tao,AN Junxiu. Sentiment Classification of Microblog Short Text Based on Feature Fusion [J]. Frontiers of Data and Computing, 2020, 2(6): 21-29. |
[12] | Liu Xiaodong,Ni Haoran. Application of Deep Learning Technology in Discipline Integration Research [J]. Frontiers of Data and Computing, 2020, 2(5): 99-109. |
[13] | Yang Jianpeng,Luo Ze,Zhang Yingming. Artificial Intelligence Modeling of Land Use Evolution Process [J]. Frontiers of Data and Computing, 2020, 2(3): 137-145. |
[14] | Ouyang Yudian,Xie Kun. An Algorithm for Network Monitoring Data Recovery [J]. Frontiers of Data and Computing, 2020, 2(3): 55-65. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||