Frontiers of Data and Computing ›› 2023, Vol. 5 ›› Issue (4): 139-153.
CSTR: 32002.14.jfdc.CN10-1649/TP.2023.04.012
doi: 10.11871/jfdc.issn.2096-742X.2023.04.012
• Technology and Application • Previous Articles
TIAN Yiqing1(),CHENG Xi2,FENG Bojing2,*(
)
Received:
2022-04-26
Online:
2023-08-20
Published:
2023-08-23
TIAN Yiqing, CHENG Xi, FENG Bojing. A Review of Computational Models for Corporate Credit Rating[J]. Frontiers of Data and Computing, 2023, 5(4): 139-153, https://cstr.cn/32002.14.jfdc.CN10-1649/TP.2023.04.012.
Table 1
The main databases of corporate credit rating"
数据库 | 简介 |
---|---|
RESSET | 中国的一个综合性数据平台,提供全世界金融市场相关数据;主要包括股票、黄金、研究报告、宏观统计等系列 |
上市公司财务报告 | 上市公司对企业生产经营概况、财务状况等信息进行披露的报告 |
中国人民银行征信系统 | 中国国内最全的企业和个人征信数据库 |
CSMAR | 针对中国国情开发的经济金融领域的研究型精准数据库,2001年创建;涵盖因子研究、绿色经济、股票、资讯、基金等18大系列,包含160多个数据库、4,000多张表、5万多个字段 |
WRDS | 由宾夕法尼亚大学沃顿商学院于1993年开发的金融领域的跨库研究工具,整合了Compustat、CRSP、TFN、TAQ等多个著名数据库 |
Bloomberg | 全球最大的财经资讯、金融数据服务提供商 |
FAME | 覆盖了英国和爱尔兰的380万家公司的信息 |
UCI机器学习知识库 | 加州大学欧文分校提出的用于机器学习的数据库 |
Compustat | 标准普尔发布的数据库,收录北美及全球上市公司近20年的财务数据 |
CRSP | 由芝加哥大学商学研究生院成立,是证券领域极具权威的数据库,广泛收录了美国上市公司的股票价格和交易数据 |
日经NEEDS | 日本最大的综合经济数据库,涵盖了从宏观经济到企业财务多个层面 |
Bankscope | BureauvanDijk与银行业权威评级机构惠誉公司合作开发的银行业信息库;提供了全球12,800多家主要银行及世界重要金融机构与组织的经营与信用分析数据 |
WIND | 由中国企业万得资讯提供,是以金融证券财经数据为核心的数据库 |
KIS-VALUE | 韩国一个提供企业报务报表及股市数据分析的数据库 |
[1] |
Hajek P, Michalak K. Feature selection in corporate credit rating prediction[J]. Knowledge-Based Systems, 2013, 51: 72-84.
doi: 10.1016/j.knosys.2013.07.008 |
[2] |
Kim K, Ahn H. A corporate credit rating model using multi-class support vector machines with an ordinal pairwise partitioning approach[J]. Computers & Operations Research, 2012, 39(8): 1800-1811.
doi: 10.1016/j.cor.2011.06.023 |
[3] |
Huang Z, Chen H, Hsu C J, et al. Credit rating analysis with support vector machines and neural networks: a market comparative study[J]. Decision support systems, 2004, 37(4): 543-558.
doi: 10.1016/S0167-9236(03)00086-1 |
[4] |
Altman E I, Haldeman R G, Narayanan P. ZETATM analysis A new model to identify bankruptcy risk of corporations[J]. Journal of banking & finance, 1977, 1(1): 29-54.
doi: 10.1016/0378-4266(77)90017-6 |
[5] |
Yurdakul M, Ic Y T. Development of a performance measurement model for manufacturing companies using the AHP and TOPSIS approaches[J]. International Journal of Production Research, 2005, 43(21): 4609-4641.
doi: 10.1080/00207540500161746 |
[6] | Gu W, Basu M, Chao Z, et al. A unified framework for credit evaluation for internet finance companies: Multi-criteria analysis through AHP and DEA[J]. International Journal of Information Technology & Decision Making, 2017, 16(3): 597-624. |
[7] | Yang S, Islam M T. Principal Component Analysis and Factor Analysis for Feature Selection in Credit Rating[EB/OL].[2020-12-21]. https://arxiv.org/abs/2011.09137. |
[8] | Reichert A K, Cho C C, Wagner G M. An examination of the conceptual issues involved in developing credit-scoring models[J]. Journal of Business & Economic Statistics, 1983, 1(2): 101-114. |
[9] |
Altman E I, Saunders A. Credit risk measurement: Developments over the last 20 years[J]. Journal of banking & finance, 1997, 21(11-12): 1721-1742.
doi: 10.1016/S0378-4266(97)00036-8 |
[10] | Friedman J H. Multivariate adaptive regression splines[J]. The annals of statistics, 1991, 19(1): 1-67. |
[11] |
Laitinen E K. Predicting a corporate credit analyst’s risk estimate by logistic and linear models[J]. International review of financial analysis, 1999, 8(2): 97-121.
doi: 10.1016/S1057-5219(99)00012-5 |
[12] |
West R C. A factor-analytic approach to bank condition[J]. Journal of Banking & Finance, 1985, 9(2): 253-266.
doi: 10.1016/0378-4266(85)90021-4 |
[13] | Liang X, Chen S, Liu Y. The study of small enterprises credit evaluation based on incremental AntClust[C]. 2007 IEEE International Conference on Grey Systems and Intelligent Services, IEEE, 2007: 294-298. |
[14] | Shi B, Meng B, Yang H, et al. A novel approach for reducing attributes and its application to small enterprise financing ability evaluation[J]. Complexity, 2018, 2018: 1-17. |
[15] |
Ic Y T, Yurdakul M. Development of a quick credibility scoring decision support system using fuzzy TOPSIS[J]. Expert Systems with Applications, 2010, 37(1): 567-574.
doi: 10.1016/j.eswa.2009.05.038 |
[16] |
Wang Y, Wang S, Lai K K. A new fuzzy support vector machine to evaluate credit risk[J]. IEEE Transactions on Fuzzy Systems, 2005, 13(6): 820-831.
doi: 10.1109/TFUZZ.2005.859320 |
[17] |
Cao L, Guan L K, Jingqing Z. Bond rating using support vector machine[J]. Intelligent Data Analysis, 2006, 10(3): 285-296.
doi: 10.3233/IDA-2006-10307 |
[18] |
Lee Y C. Application of support vector machines to corporate credit rating prediction[J]. Expert Systems with Applications, 2007, 33(1): 67-74.
doi: 10.1016/j.eswa.2006.04.018 |
[19] |
Huang C L, Chen M C, Wang C J. Credit scoring with a data mining approach based on support vector machines[J]. Expert systems with applications, 2007, 33(4): 847-856.
doi: 10.1016/j.eswa.2006.07.007 |
[20] |
Zhu P, Hu Q. Rule extraction from support vector mach-ines based on consistent region covering reduction[J]. Knowledge-Based Systems, 2013, 42: 1-8.
doi: 10.1016/j.knosys.2012.12.003 |
[21] |
Maldonado S, Pérez J, Bravo C. Cost-based feature selection for support vector machines: An application in credit scoring[J]. European Journal of Operational Research, 2017, 261(2): 656-665.
doi: 10.1016/j.ejor.2017.02.037 |
[22] | Gu T, Yang S. Duration prediction for truck crashes based on the XGBoost algorithm[M]. CICTP 2019, 2019: 5021-5031. |
[23] |
Florez-Lopez R, Ramon-Jeronimo J M. Enhancing accuracy and interpretability of ensemble strategies in credit risk assessment. A correlated-adjusted decision forest proposal[J]. Expert Systems with Applications, 2015, 42(13): 5737-5753.
doi: 10.1016/j.eswa.2015.02.042 |
[24] |
Yeh C C, Lin F, Hsu C Y. A hybrid KMV model, random forests and rough set theory approach for credit rating[J]. Knowledge-Based Systems, 2012, 33: 166-172.
doi: 10.1016/j.knosys.2012.04.004 |
[25] |
Abellán J, Castellano J G. A comparative study on base classifiers in ensemble methods for credit scoring[J]. Expert systems with applications, 2017, 73: 1-10.
doi: 10.1016/j.eswa.2016.12.020 |
[26] | Donate J P, Cortez P, Sanchez G G, et al. Time series forecasting using a weighted cross-validation evo-lutionary artificial neural network ensemble[J]. Neuro-computing, 2013, 109: 27-32. |
[27] |
Yu L, Wang S, Lai K K. Credit risk assessment with a multistage neural network ensemble learning approach[J]. Expert systems with applications, 2008, 34(2): 1434-1444.
doi: 10.1016/j.eswa.2007.01.009 |
[28] |
He H, Zhang W, Zhang S. A novel ensemble method for credit scoring: Adaption of different imbalance ratios[J]. Expert Systems with Applications, 2018, 98: 105-117.
doi: 10.1016/j.eswa.2018.01.012 |
[29] | Chornous G, Nikolskyi I. Business-oriented feature selection for hybrid classification model of credit scoring[C]. 2018 IEEE Second International Conference on Data Stream Mining & Processing (DSMP), IEEE, 2018: 397-401. |
[30] | Wang M, Ku H. Utilizing historical data for corporate credit rating assessment[J]. Expert Systems with Appli-cations, 2021, 165: 113925. |
[31] |
Chen Y S, Cheng C H. Hybrid models based on rough set classifiers for setting credit rating decision rules in the global banking industry[J]. Knowledge-Based Systems, 2013, 39: 224-239.
doi: 10.1016/j.knosys.2012.11.004 |
[32] |
Chai N, Wu B, Yang W, et al. A multicriteria approach for modeling small enterprise credit rating: evidence from China[J]. Emerging Markets Finance and Trade, 2019, 55(11): 2523-2543.
doi: 10.1080/1540496X.2019.1577237 |
[33] |
Chen B, Long S. A novel end-to-end corporate credit rating model based on self-attention mechanism[J]. IEEE Access, 2020, 8: 203876-203889.
doi: 10.1109/Access.6287639 |
[34] | Golbayani P, Wang D, Florescu I. Application of deep neural networks to assess corporate credit rating[EB/OL]. [2020-3-4]. https://arxiv.org/abs/2003.02334. |
[35] | Brennan D, Brabazon A. Corporate Bond Rating Using Neural Networks[C]. IC-AI, 2004: 161-167. |
[36] |
Angelini E, Di Tollo G, Roli A. A neural network approach for credit risk evaluation[J]. The quarterly review of economics and finance, 2008, 48(4): 733-755.
doi: 10.1016/j.qref.2007.04.001 |
[37] |
Choi J, Suh Y, Jung N. Predicting corporate credit rating based on qualitative information of MD&A transformed using document vectorization techniques[J]. Data Technologies and Applications, 2020, 54(2): 151-168.
doi: 10.1108/DTA-08-2019-0127 |
[38] | Du Y. Enterprise credit rating based on genetic neural network[C]. MATEC Web of Conferences. EDP Sciences, 2018, 227: 02011. |
[39] |
Luo C, Wu D, Wu D. A deep learning approach for credit scoring using credit default swaps[J]. Engineering Applications of Artificial Intelligence, 2017, 65: 465-470.
doi: 10.1016/j.engappai.2016.12.002 |
[40] |
Kim K S. Predicting bond ratings using publicly available information[J]. Expert Systems with Applications, 2005, 29(1): 75-81.
doi: 10.1016/j.eswa.2005.01.007 |
[41] | Hájek P. Probabilistic Neural Networks for Credit Rating Modelling[C]. IJCCI (ICFC-ICNC), 2010: 289-294. |
[42] | Fu K, Cheng D, Tu Y, et al. Credit card fraud detection using convolutional neural networks[C]. International conference on neural information processing, Springer, Cham, 2016: 483-490. |
[43] | Rajaa S, Sahoo J K. Convolutional feature extraction and neural arithmetic logic units for stock prediction[C]. International Conference on Advances in Computing and Data Sciences, Springer, Singapore, 2019: 349-359. |
[44] |
Dixon M, Klabjan D, Bang J H. Classificationbased fin-ancial markets prediction using deep neural networks[J]. Algorithmic Finance, 2017, 6(3-4): 67-77.
doi: 10.3233/AF-170176 |
[45] | Feng B, Xue W, Xue B, et al. Every corporation owns its image: Corporate credit ratings via convolutional neural networks[C]. 2020 IEEE 6th International Conference on Computer and Communications (ICCC), IEEE, 2020: 1578-1583. |
[46] | Mikolov T, Chen K, Corrado G, et al. Efficient estimation of word representations in vector space[EB/OL]. [2014-9-7]. https://arxiv.org/abs/1301.3781. |
[47] | Le Q, Mikolov T. Distributed representations of sentences and documents[C]. International conference on machine learning, PMLR, 2014: 1188-1196. |
[48] | Feng B, Xu H, Xue W, et al. Every corporation owns its structure: Corporate credit ratings via graph neural networks[EB/OL]. [2020-11-27]. https://arxiv.org/abs/2012.01933. |
[49] | Feng B, Xue W. Adversarial semi-supervised learning for corporate credit ratings[J]. The Journal of Software, 2021, 16(6): 259-266. |
[50] | Feng B, Xue W. Contrastive Pre-training for Imbalanced Corporate Credit Ratings[EB/OL]. [2022-2-23]. https://arxiv.org/abs/2102.12580. |
[51] | Plumb G, Molitor D, Talwalkar A S. Model agnostic supervised local explanations[J]. Advances in neural information processing systems, 2018, 31: 1-10. |
[52] | Wang D, Chen Z, Florescu I. A Sparsity Algorithm with Applications to Corporate Credit Rating[EB/OL]. [2021-7-21]. https://arxiv.org/abs/2107.10306. |
[1] | MENG Zhe, YU Su. Taxi Demand Prediction Model Based on Spark and Improved BP Neural Network [J]. Frontiers of Data and Computing, 2023, 5(4): 112-126. |
[2] | CHEN Meilin, LIU Duanyang, XU Liming, WANG Yang. A Review of Force Field Models Based on Machine Learning [J]. Frontiers of Data and Computing, 2023, 5(4): 27-37. |
[3] | LIU Duanyang, WEI Zhongming. Application of Supervised Learning Algorithms in Materials Science [J]. Frontiers of Data and Computing, 2023, 5(4): 38-47. |
[4] | CHEN Dong, LI Ming, CHEN Shuwen. Hyperspectral Image Classification Method Combining Transformer and Multi-Layer Feature Aggregation [J]. Frontiers of Data and Computing, 2023, 5(3): 138-151. |
[5] | LI Yan,HE Hongbo,WANG Runqiang. A Survey of Research on Microblog Popularity Prediction [J]. Frontiers of Data and Computing, 2023, 5(2): 119-135. |
[6] | GAO Tian,ZHU Jiaojun,ZHANG Jinxin,SUN Yirong,YU Fengyuan,TENG Dexiong,LU Deliang,YU Lizhong,WANG Zongguo. Estimation of Carbon Flux of a Temperate Forest Ecosystem Based on Next-Generation Information Technologies [J]. Frontiers of Data and Computing, 2023, 5(2): 60-72. |
[7] | WANG Fan,FENG Liqiang,CAO Rongqiang. Design and Application of Big Data-Driven Ocean Artificial Intelligence Service Platform [J]. Frontiers of Data and Computing, 2023, 5(2): 73-85. |
[8] | XU Songyuan,LIU Feng. ESDRec: A Data Recommendation Model for Earth Big Data Platform [J]. Frontiers of Data and Computing, 2023, 5(1): 55-64. |
[9] | ZHAO Zhongbin,CAI Manchun,LU Tianliang. Network Malicious Traffic Detection Incorporating Multi-Head Attention Mechanism [J]. Frontiers of Data and Computing, 2022, 4(5): 60-67. |
[10] | SHI Xuemei,ZHU Keliang,ZHANG Xiangmin,ZHANG Shutao,CHEN Liangfeng. Occluded Face Inpainting Method Based on Generative Adversarial Networks [J]. Frontiers of Data and Computing, 2022, 4(4): 123-131. |
[11] | WEI Ting,ZHANG Honghai,LIN Xiaoli,ZHANG Leilei,WANG Yan,JIA Jinfeng. Predictive Model of the Revisit Behavior of Cloud Service Site Users [J]. Frontiers of Data and Computing, 2022, 4(3): 124-130. |
[12] | SUN Yongqian,ZHANG Ruru,LIN Zihan,ZHANG Shenglin,TAN Zhiyuan,ZHANG Yuzhi. Evaluation of KPI Anomaly Detection Methods [J]. Frontiers of Data and Computing, 2022, 4(3): 46-65. |
[13] | XIAO Nan,ZHOU Mingzhu,XING Jun,LUO Ze,LI Xiaohui. Authenticity Identification of Cigarettes Based on Attention Mechanism and High-resolution Network [J]. Frontiers of Data and Computing, 2021, 3(5): 118-129. |
[14] | ZHANG Meng,LI Jian. Bird Audio Data Preprocessing Method [J]. Frontiers of Data and Computing, 2021, 3(5): 130-140. |
[15] | ZHANG Yining,HE Hongbo,WANG Runqiang. A Survey on Popular Digital Audio Prediction Techniques [J]. Frontiers of Data and Computing, 2021, 3(4): 81-92. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||