Frontiers of Data and Computing ›› 2024, Vol. 6 ›› Issue (3): 15-27.
CSTR: 32002.14.jfdc.CN10-1649/TP.2024.03.002
doi: 10.11871/jfdc.issn.2096-742X.2024.03.002
• Special Issue: Advance of Intelligent Healthcare • Previous Articles Next Articles
WANG Zhiyong1(),LIU Jingjing2,WANG Xinming1,CHEN Bowen1,NIE Wei1,ZHANG Hanlin1,LIU Honghai1,*(
)
Received:
2023-11-02
Online:
2024-06-20
Published:
2024-06-21
WANG Zhiyong, LIU Jingjing, WANG Xinming, CHEN Bowen, NIE Wei, ZHANG Hanlin, LIU Honghai. Advancements and Frontiers in Autism Diagnosis and Treatment Based on Artificial Intelligence[J]. Frontiers of Data and Computing, 2024, 6(3): 15-27, https://cstr.cn/32002.14.jfdc.CN10-1649/TP.2024.03.002.
[1] | GUILLON Q, HADJIKHANI N, BADUEL S, et al. Visual social attention in autism spectrum disorder: Insights from eye tracking studies[J]. Neuroscience & Biobehavioral Reviews, 2014, 42: 279-297. |
[2] | CONTROL C F D, PREVENTION. Key findings from the ADDM network: A snapshot of autism spectrum disorder[M]. Community Report on Autism, 2016: 1-3. |
[3] | 五彩鹿儿童行为矫正中心. 中国自闭症教育康复行业发展状况报告[M]. 中国自闭症教育康复行业发展状况报告, 2015: 1-372. |
[4] |
RODGERS M, SIMMONDS M, MARSHALL D, et al. Intensive behavioural interventions based on applied behaviour analysis for young children with autism: An international collaborative individual participant data meta-analysis[J]. Autism, 2021, 25(4): 1137-53.
doi: 10.1177/1362361320985680 pmid: 33482692 |
[5] |
SCASSELLATI B, ADMONI H, MATARIĆ M. Robots for use in autism research[J]. Annual Review of Biomedical Engineering, 2012, 14: 275-294.
doi: 10.1146/annurev-bioeng-071811-150036 pmid: 22577778 |
[6] | LIU X, WU Q, ZHAO W, et al. Technology-facilitated diagnosis and treatment of individuals with autism spectrum disorder: An engineering perspective[J]. Applied Sciences, 2017, 7(10): 1051. |
[7] |
MAGIATI I, CHARMAN T, HOWLIN P. A two-year prospective follow-up study of community-based early intensive behavioural intervention and specialist nursery provision for children with autism spectrum disorders[J]. Journal of Child Psychology and Psychiatry, 2007, 48(8): 803-812.
pmid: 17683452 |
[8] |
MING S, MULHERN T, STEWART I, et al. Training class inclusion responding in typically developing children and individuals with autism[J]. Journal of Applied Behavior Analysis, 2018, 51(1): 53-60.
doi: 10.1002/jaba.429 pmid: 29265371 |
[9] | LORD C, CHARMAN T, HAVDAHL A, et al. The Lancet Commission on the future of care and clinical research in autism[J]. The Lancet, 2022, 399(10321): 271-334. |
[10] |
LORD C, RUTTER M, LE COUTEUR A. Autism Diagnostic Interview-Revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders[J]. Journal of Autism and Developmental Disorders, 1994, 24(5): 659-685.
doi: 10.1007/BF02172145 pmid: 7814313 |
[11] | ROBINS D, FEIN D, BARTON M. Modified checklist for autism in toddlers (M-CHAT) follow-up interview[J/OL]. Self-published, 1999, https://www.mchat-screen.com/. |
[12] |
ROBINS D L, CASAGRANDE K, BARTON M, et al. Validation of the modified checklist for autism in toddlers, revised with follow-up (M-CHAT-R/F)[J]. Pediatrics, 2014, 133(1): 37-45.
doi: 10.1542/peds.2013-1813 pmid: 24366990 |
[13] |
RELLINI E, TORTOLANI D, TRILLO S, et al. Childhood Autism Rating Scale (CARS) and Autism Behavior Checklist (ABC) correspondence and conflicts with DSM-IV criteria in diagnosis of autism[J]. Journal of Autism and Developmental Disorders, 2004, 34: 703-708.
doi: 10.1007/s10803-004-5290-2 pmid: 15679189 |
[14] | LORD C, RISI S, LAMBRECHT L, et al. The Autism Diagnostic Observation Schedule—Generic: A standard measure of social and communication deficits associated with the spectrum of autism[J]. Journal of Autism and Developmental Disorders, 2000, 30: 205-223. |
[15] |
GOTHAM K, RISI S, PICKLES A, et al. The Autism Diagnostic Observation Schedule: revised algorithms for improved diagnostic validity[J]. Journal of Autism and Developmental Disorders, 2007, 37: 613-627.
doi: 10.1007/s10803-006-0280-1 pmid: 17180459 |
[16] | BAIO J, WIGGINS L, CHRISTENSEN D L, et al. Prevalence of autism spectrum disorder among children aged 8 years—autism and developmental disabilities monitoring network, 11 sites, United States, 2014[J]. MMWR Surveillance Summaries, 2018, 67(6): 1. |
[17] | 徐秀, 邹小兵, 李廷玉. 孤独症谱系障碍儿童早期识别筛查和早期干预专家共识[J]. 中华儿科杂志, 2017, 55(12): 890-897. |
[18] | 中华医学会儿科学分会发育行为学组, 中国医师协会儿科分会儿童保健学组. 中国低龄孤独症谱系障碍患儿家庭干预专家共识[J]. 中华儿科杂志, 2022, 60(5): 6. |
[19] | MELICAN K, RICHTER-DAHLFORS A. International Classification of Diseases (ICD)[M]. Encyclopedia of Biostatistics, 2011: 1-3. |
[20] | World Health Organization. International Classification of Functioning, Disability, and Health: Children & Youth Version: ICF-CY[M]. World Health Organization, 2007: 1-351. |
[21] |
HUME K, STEINBRENNER J R, ODOM S L, et al. Evidence-based practices for children, youth, and young adults with autism: Third generation review[J]. Journal of Autism and Developmental Disorders, 2021, 51(11): 4013-4032.
doi: 10.1007/s10803-020-04844-2 pmid: 33449225 |
[22] | 孙哲南, 张兆翔, 王威, 等. 2019年人工智能新态势与新进展[J]. 数据与计算发展前沿, 2019, 1(2): 1-16. |
[23] | 陈琼, 杨咏, 黄天林, 冯媛. 小样本图像语义分割综述[J]. 数据与计算发展前沿, 2021, 3(6): 17-34. |
[24] | WANG L, LIU J, ZHANG W, et al. Diagnosis and Intervention for Children with Autism Spectrum Disorder: A Survey[J]. IEEE Transactions on Cognitive and Developmental Systems, 2022, 14(3): 819-832. |
[25] | AKSHOOMOFF N, LORD C, LINCOLN A J, et al. Outcome Classification of Preschool Children with Autism Spectrum Disorders using MRI Brain Measures[J]. Journal of the American Academy of Child & Adolescent Psychiatry, 2004, 43(3): 349-357. |
[26] | HAZLETT H C, GU H, MUNSELL B C, et al. Early brain development in infants at high risk for autism spectrum disorder[J]. Nature, 2017, 542(7641): 348-351. |
[27] |
KOYAMA M S, DI MARTINO A, ZUO X-N, et al. Resting-state functional connectivity indexes reading competence in children and adults[J]. Journal of Neuroscience, 2011, 31(23): 8617-8624.
doi: 10.1523/JNEUROSCI.4865-10.2011 pmid: 21653865 |
[28] | GREEN S A, HERNANDEZ L, BOOKHEIMER S Y, et al. Salience network connectivity in autism is related to brain and behavioral markers of sensory overresponsivity[J]. Journal of the American Academy of Child & Adolescent Psychiatry, 2016, 55(7): 618-626. e1. |
[29] |
BUCH A M, VéRTES P E, SEIDLITZ J, et al. Molecular and network-level mechanisms explaining individual differences in autism spectrum disorder[J]. Nature Neuroscience, 2023, 26(4): 650-663.
doi: 10.1038/s41593-023-01259-x pmid: 36894656 |
[30] | WANG M, ZHANG D, HUANG J, et al. Identifying autism spectrum disorder with multi-site fMRI via low-rank domain adaptation[J]. IEEE Transactions on Medical Imaging, 2019, 39(3): 644-655. |
[31] | HUANG Z-A, ZHU Z, YAU C H, et al. Identifying autism spectrum disorder from resting-state fMRI using deep belief network[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 32(7): 2847-2861. |
[32] |
BOSL W J, TAGER-FLUSBERG H, NELSON C A. EEG analytics for early detection of autism spectrum disorder: a data-driven approach[J]. Scientific Reports, 2018, 8(1): 6828.
doi: 10.1038/s41598-018-24318-x pmid: 29717196 |
[33] | 张丹. 基于脑电指标的孤独症儿童辅助诊断系统[D]. 燕山大学, 2019. |
[34] |
NAPLES A J, WU J, MAYES L C, et al. Event-related potentials index neural response to eye contact[J]. Biological Psychology, 2017, 127: 18-24.
doi: S0301-0511(17)30073-X pmid: 28396215 |
[35] |
TYE C, BATTAGLIA M, BERTOLETTI E, et al. Altered neurophysiological responses to emotional faces discriminate children with ASD, ADHD and ASD+ADHD[J]. Biological Psychology, 2014, 103: 125-134.
doi: 10.1016/j.biopsycho.2014.08.013 pmid: 25179537 |
[36] | SU W-C, CULOTTA M, MUELLER J, et al. fNIRS-Based Differences in Cortical Activation during Tool Use, Pantomimed Actions, and Meaningless Actions between Children with and without Autism Spectrum Disorder (ASD)[J]. Brain Sciences, 2023, 13(6): 876. |
[37] | SU W-C, CULOTTA M, MUELLER J, et al. Autism-Related Differences in Cortical Activation When Observing, Producing, and Imitating Communicative Gestures: An fNIRS Study[J]. Brain Sciences, 2023, 13(9): 1284. |
[38] | ALVARES G A, QUINTANA D S, KEMP A H, et al. Reduced heart rate variability in social anxiety disorder: associations with gender and symptom severity[J]. PloS one, 2013, 8(7): e70468. |
[39] |
BENEVIDES T W, LANE S J. A review of cardiac autonomic measures: considerations for examination of physiological response in children with autism spectrum disorder[J]. Journal of autism and developmental disorders, 2015, 45: 560-575.
doi: 10.1007/s10803-013-1971-z pmid: 24154761 |
[40] | HERRY C L, BURNS P, DESROCHERS A, et al. Vagal contributions to fetal heart rate variability: an omics approach[J]. Physiological measurement, 2019, 40(6): 065004. |
[41] | TILWANI D, BRADSHAW J, SHETH A, et al. ECG Recordings as Predictors of Very Early Autism Likelihood: A Machine Learning Approach[J]. Bioengineering, 2023, 10(7): 827. |
[42] | 钟艺豪. 基于深度学习的孤独症儿童辅助诊断研究[D]. 南昌大学, 2019. |
[43] |
CAMPBELL K, CARPENTER K L, HASHEMI J, et al. Computer vision analysis captures atypical attention in toddlers with autism[J]. Autism, 2019, 23(3): 619-628.
doi: 10.1177/1362361318766247 pmid: 29595333 |
[44] | WANG Z, LIU J, HE K, et al. Screening Early Children With Autism Spectrum Disorder via Response-to-Name Protocol[J]. IEEE Transactions on Industrial Informatics, 2019, 17(1): 587-595. |
[45] | LIU J, WANG Z, XU K, et al. Early Screening of Autism in Toddlers via Response-To-Instructions Protocol[J]. IEEE Transactions on Cybernetics, 2022, 52(5): 3914-3924. |
[46] | LIU J, WANG Z, QIN H, et al. Social Recognition of Joint Attention Cycles in Children with Autism Spectrum Disorders[J]. IEEE Transactions on Biomedical Engineering, 2024, 71(1): 237-246,. |
[47] | MARINOIU E, ZANFIR M, OLARU V, et al. 3d human sensing, action and emotion recognition in robot assisted therapy of children with autism[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, F, 2018: 2158-2167. |
[48] | TIAN Y, MIN X, ZHAI G, et al. Video-based early asd detection via temporal pyramid networks[C]. proceedings of the 2019 IEEE International Conference on Multimedia and Expo (ICME), F, 2019: 272-277. |
[49] | DEL COCO M, LEO M, CARCAGNI P, et al. A computer vision based approach for understanding emotional involvements in children with autism spectrum disorders[C]. proceedings of the Proceedings of the IEEE International Conference on Computer Vision Workshops, F, 2017: 1401-1407. |
[50] | KALANTARIAN H, JEDOUI K, WASHINGTON P, et al. A mobile game for automatic emotion-labeling of images[J]. IEEE Transactions on Games, 2018, 12(2): 213-218. |
[51] | 唐传高, 郑文明, 宗源, 等. 深度空时婴幼儿表情识别模型下的ASD自动筛查[J]. 中国图象图形学报, 2020, 25(11): 11. |
[52] |
DAWSON G, CAMPBELL K, HASHEMI J, et al. Atypical postural control can be detected via computer vision analysis in toddlers with autism spectrum disorder[J]. Scientific Reports, 2018, 8(1): 17008.
doi: 10.1038/s41598-018-35215-8 pmid: 30451886 |
[53] | 陈靓影, 张如静, 王帆, 等. 孤独症儿童早期社交技能的智能化评估——以应答性共同注意和应答性社交微笑为例[J]. 电化教育研究, 2019, 40(11): 114-120, 128. |
[54] | LI J, CHEN Z, LI G, et al. Automatic classification of ASD children using appearance-based features from videos[J]. Neurocomputing, 2022, 470: 40-50. |
[55] | LIU J, WANG Z, AND LIU H, et al. Multimodal Emotion Recognition for Children with Autism Spectrum Disorder in Social Interaction[J/OL]. International Journal of Human-Computer Interaction, 2023: 1-10. DOI: 10.1080/10447318.2023.2232194. |
[56] | ZHANG S, CHEN D, TANG Y, et al. Learning graph-based relationship of dual-modal features towards subject adaptive ASD assessment[J]. Neurocomputing, 2023, 516: 194-204. |
[57] | VETTORI S, VAN DER DONCK S, NYS J, et al. Combined frequency-tagging EEG and eye-tracking measures provide no support for the “excess mouth/diminished eye attention” hypothesis in autism[J]. Molecular Autism, 2020, 11(1): 1-22. |
[58] |
VETTORI S, DZHELYOVA M, VAN DER DONCK S, et al. Combined frequency-tagging EEG and eye tracking reveal reduced social bias in boys with autism spectrum disorder[J]. Cortex, 2020, 125: 135-148.
doi: S0010-9452(19)30430-7 pmid: 31982699 |
[59] |
DI MARTINO A, YAN C-G, LI Q, et al. The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism[J]. Molecular psychiatry, 2014, 19(6): 659-667.
doi: 10.1038/mp.2013.78 pmid: 23774715 |
[60] | BILLING E, BELPAEME T, CAI H, et al. The DREAM Dataset: Supporting a data-driven study of autism spectrum disorder and robot enhanced therapy[J]. PloS one, 2020, 15(8): e0236939. |
[61] | BAIRD A, AMIRIPARIAN S, CUMMINS N, et al. Automatic classification of autistic child vocalisations: A novel database and results[J]. 2017, 849-853. DOI: 10.21437/Interspeech.2017-730. |
[62] | REHG J, ABOWD G, ROZGA A, et al. Decoding children's social behavior[C]. proceedings of the Proceedings of the IEEE conference on computer vision and pattern recognition, F, 2013: 3414-3421. |
[63] |
JäNCKE L. The plastic human brain[J]. Restorative Neurology and Neuroscience, 2009, 27(5): 521-538.
doi: 10.3233/RNN-2009-0519 pmid: 19847074 |
[64] | DEMIRTAS-TATLIDEDE A, VAHABZADEH-HAGH A M, PASCUAL-LEONE A. Can noninvasive brain stimulation enhance cognition in neuropsychiatric disorders?[J]. Neuropharmacology, 2013, 64: 566-78. |
[65] |
SOKHADZE E M, EL-BAZ A, BARUTH J, et al. Effects of low frequency repetitive transcranial magnetic stimulation (rTMS) on gamma frequency oscillations and event-related potentials during processing of illusory figures in autism[J]. Journal of Autism and Developmental Disorders, 2009, 39: 619-634.
doi: 10.1007/s10803-008-0662-7 pmid: 19030976 |
[66] |
SOKHADZE E M, BARUTH J M, SEARS L, et al. Prefrontal neuromodulation using rTMS improves error monitoring and correction function in autism[J]. Applied psychophysiology and biofeedback, 2012, 37: 91-102.
doi: 10.1007/s10484-012-9182-5 pmid: 22311204 |
[67] |
WANG Y, HENSLEY M K, TASMAN A, et al. Heart rate variability and skin conductance during repetitive TMS course in children with autism[J]. Applied psychophysiology and biofeedback, 2016, 41: 47-60.
doi: 10.1007/s10484-015-9311-z pmid: 26341093 |
[68] | CASANOVA M F, SOKHADZE E M, CASANOVA E L, et al. Transcranial magnetic stimulation in autism spectrum disorders: Neuropathological underpinnings and clinical correlations[C]. proceedings of the Seminars in pediatric neurology, F, Elsevier, 2020: 100832. |
[69] | COLE E J, ENTICOTT P G, OBERMAN L M, et al. The potential of repetitive transcranial magnetic stimulation for autism spectrum disorder: a consensus statement[J]. Biological Psychiatry, 2019, 85(4): e21-e2. |
[70] | D’URSO G, FERRUCCI R, BRUZZESE D, et al. Transcranial direct current stimulation for autistic disorder[J]. Biological Psychiatry, 2014, 76(5): e5-e6. |
[71] | AMATACHAYA A, AUVICHAYAPAT N, PATJANASOONTORN N, et al. Effect of anodal transcranial direct current stimulation on autism: a randomized double-blind crossover trial[J]. Behavioural Neurology, 2014, (2014): 173073. |
[72] | FAN L, CAO W, DU Y, et al. Virtual Reality App for ASD Child Early Training[C]. proceedings of the VR/AR and 3D Displays:First International Conference, ICVRD 2020, Hangzhou, China, December 20, 2020, Revised Selected Papers 1, F, 2021: 89-102. |
[73] | NIE G, ULLAL A, ZHENG Z, et al. An immersive computer-mediated caregiver-child interaction system for young children with autism spectrum disorder[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2021, 29: 884-893. |
[74] | TSAI W-T, LEE I-J, CHEN C-H. Inclusion of third-person perspective in CAVE-like immersive 3D virtual reality role-playing games for social reciprocity training of children with an autism spectrum disorder[J]. Universal Access in the Information Society, 2021, 20: 375-389. |
[75] | RUDOVIC O, LEE J, DAI M, et al. Personalized machine learning for robot perception of affect and engagement in autism therapy[J]. Science Robotics, 2018, 3(19): eaao6760. |
[76] | MA H, CHEN B, REN W, et al. Assessment System for Imitative Ability for Children with Autism Spectrum Disorder Based on Human Pose Estimation[C]. proceedings of the International Conference on Intelligent Robotics and Applications, F, 2022: 360-369. |
[77] | LI J, CHHEANG V, KULLU P, et al. MMASD: A Multimodal Dataset for Autism Intervention Analysis[C]. proceedings of the International Conference on Multimodal Interaction, F, 2023: 397-405. |
[1] | KOU Dazhi. Automatic Teeth Segmentation on Dental Panoramic Radiographs with Deep Learning [J]. Frontiers of Data and Computing, 2024, 6(3): 162-172. |
[2] | HE Ruilin, YANG Xinyi, SUN Hongzan, LI Chen. The Latest Development and Prospects of Histopathological Image Analysis Methods Based on Graph Features [J]. Frontiers of Data and Computing, 2024, 6(2): 101-116. |
[3] | ZHAO Qing, ZHANG Yue, ZHANG Chongbin, TIAN Dong, CUI Wenkai, SHAN Guihua. Augmented Reality-Based Multi-Cues Remote Industrial Collaboration System [J]. Frontiers of Data and Computing, 2023, 5(6): 138-152. |
[4] | ZHU Mingming, CAO Wudi, WU Lin, WANG Zixi, LIAO Qi, ZHANG Si, TANG Xiao, LI Jie, WANG Jing, WANG Yangang, WANG Zifa. The Development and Prospects of Informatization Applications in Dual-Carbon Atmospheric Environment Based on Artificial Intelligence and Big Data [J]. Frontiers of Data and Computing, 2023, 5(3): 2-12. |
[5] | HU Xiaoyan,XU Jiyao,ZOU Ziming. Preliminary Study on Paradigm Shift in Space Weather Research Driven by Big Data and Artificial Intelligence [J]. Frontiers of Data and Computing, 2023, 5(2): 24-36. |
[6] | QI Fazhi,LI Gang,LI Chun,WANG Lu,ZHANG Yi,ZHANG Zhengde,CHEN Gang,LUO Wuming,ZHAO Lina,HU Yu,YUAN Ye. Big Data and AI for High Energy Physics [J]. Frontiers of Data and Computing, 2023, 5(2): 50-59. |
[7] | WANG Fan,FENG Liqiang,CAO Rongqiang. Design and Application of Big Data-Driven Ocean Artificial Intelligence Service Platform [J]. Frontiers of Data and Computing, 2023, 5(2): 73-85. |
[8] | WANG Zongguo,WAN Meng,CHEN Ziyi,LI Kai,WANG Xiaoguang,LIU Miao,MENG Sheng,WANG Yangang. Research and Application of a Data-Driven Intelligent Design Platform for Materials [J]. Frontiers of Data and Computing, 2023, 5(2): 86-96. |
[9] | LIU Jiaqi,YANG Binyan. Research on the Hot Spots and Trends of the Coupling Development of Artificial Intelligence and Social Science in China——A Bibliometric Analysis Based on CiteSpace [J]. Frontiers of Data and Computing, 2022, 4(6): 77-91. |
[10] | WANG Haitao,SONG Lihua. Context Awareness: Basic Concepts, Key Technologies and Application Systems [J]. Frontiers of Data and Computing, 2022, 4(3): 110-123. |
[11] | ZHANG Runzi,LIU Wenmao. An Intelligent Security Operation Technology System Framework AISecOps [J]. Frontiers of Data and Computing, 2021, 3(3): 32-47. |
[12] | YUAN Yong,OUYANG Liwei,WANG Xiao,WANG Feiyue. Blockchain-Based Intelligent-Ware: A Novel Paradigm for Distributed Artificial Intelligence Research [J]. Frontiers of Data and Computing, 2021, 3(1): 1-14. |
[13] | Mo Zijia,Gao Zhipeng,Miao Dong. Edge Intelligence: A New Exploration for Artificial Intelligence Expanding to Edge [J]. Frontiers of Data and Computing, 2020, 2(4): 16-27. |
[14] | Yu Peng,Li Wenjing,Feng Lei,Zhou Fanqin,Yang Yang,Qiu Xuesong. Intelligent Network Management and Control Architecture and Key Technologies for Future 6G Networks [J]. Frontiers of Data and Computing, 2020, 2(3): 32-44. |
[15] | Li kenli,Yang Wangdong,Chen Cen,Chen Jianguo,Ding Yan. Efficient Computing for Artificial Intelligence and Big Data [J]. Frontiers of Data and Computing, 2020, 2(1): 27-37. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||