[1] |
赵继成. 材料基因组计划简介[J]. 自然, 2013, 36(2):89-104.
|
[2] |
Anubhav Jain, Shyue Ping Ong, Geoffroy Hautier, et al. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation[J]. APL Materials, 2013, 1:011002.
doi: 10.1063/1.4812323
|
[3] |
Stefano Curtarolo, Gua L. W. Hart, Marco Buongiorno Nardelli, et al. The high-throughput highway to comput-ational materials design[J]. Nature Materials, 2013, 12: 191-201.
doi: 10.1038/nmat3568
pmid: 23422720
|
[4] |
James E. Saal, Scott Kirklin, Muratahan Aykol, et al. Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD)[J]. JOM, 2013, 65:1501-1509.
doi: 10.1007/s11837-013-0755-4
|
[5] |
Claudia Draxl and Matthias Scheffler. NOMAD: The FAIR concept for big data-driven materials science[J]. MRS Bulletin, 2018, 43(9): 676-682.
doi: 10.1557/mrs.2018.208
|
[6] |
Leopold Talirz, Snehal Kumbhar, Elsa Passaro, et al. Materials Cloud, a platform for open computational sci-ence[J]. Scientific Data, 2020, 7: 299.
doi: 10.1038/s41597-020-00637-5
pmid: 32901046
|
[7] |
Giovanni Pizzi, Andrea Cepellotti, Riccardo Sabatini, et al. AiiDA: automated interactive infrastructure and data-base for computational science[J]. Computational Mater-ials Science, 2016, 111: 218-230.
|
[8] |
Xiaoyu Yang, Zongguo Wang, Xushan Zhao, et al. MatCloud: A high-throughput computational infrast-ructure for integrated management of materials simul-ation, data and resources[J]. Computational Materials Science, 2018, 146:319-333.
doi: 10.1016/j.commatsci.2018.01.039
|
[9] |
刘淼, 孟胜. Atomly.net数据平台及其在无机化学中的应用[J]. 中国科学: 化学, 2023, 53(1): 19-25.
|
[10] |
Lili Xi, Shanshan Pan, Xin Li, et al. Discovery of high-performance thermoelectric chalcogenides through reli-able high-throughput material screening[J]. Journal of the American Chemical Society, 2018, 140(34): 10785-10793.
doi: 10.1021/jacs.8b04704
pmid: 30086638
|
[11] |
Paul Raccuglia, Katherine C. Elbert, Philip D. F. Adler, et al. Machine-learning-assisted materials discovery using failed experiments[J]. Nature, 2016, 533:73-76.
doi: 10.1038/nature17439
|
[12] |
Yiming Chen, Chi Chen, Chen Zhang, et al. Database of ab initio L-edge X-ray absorption near edge structure[J]. Scientific Data, 2021, 8:153.
doi: 10.1038/s41597-021-00936-5
pmid: 34117266
|
[13] |
Nathan C. Frey, Matthew K. Horton, Jason M. Munro, et al. High-throughput search for magnetic and topological order in transition metal oxides[J]. Science Advances, 2020, 6: eabd1076.
doi: 10.1126/sciadv.abd1076
|
[14] |
Yilei Wu, Shuaihua Lu, Minggang Ju, et al. Accelerated design of promising mixed lead-free double halide organ-ic-inorganic perovskites for photovoltaics using machine learning[J]. Nanoscale, 2021, 13: 12250-12259.
doi: 10.1039/d1nr01117k
pmid: 34241606
|
[15] |
Yang Liu, Haiyou Huang, Jie Yuan, et al. Upper limit of the transition temperature of superconducting materials[J]. Patterns, 2022, 3:100609.
doi: 10.1016/j.patter.2022.100609
|
[16] |
Ze Yu, Tao Bo, Bo Liu, et al. Superconductive materials with MgB2-like structures from data-driven screening[J]. Physical Review B, 2022, 105:214517.
doi: 10.1103/PhysRevB.105.214517
|
[17] |
Wei Wu and Qiang Sun. Screening Topological Quantum Materials for Na-Ion Battery Cathode[J]. ACS Materials Letters, 2022, 4(1): 175-180.
doi: 10.1021/acsmaterialslett.1c00545
|
[18] |
Xia Cai, Yiming Zhang, Zejiao Shi, et al. Discovery of Lead-Free Perovskites for High-Performance Solar Cells via Machine Learning: Ultrabroadband Absorption, Low Radiative Combination, and Enhanced Thermal Condu-ctivities[J]. Advanced Science, 2022, 9: 2103648.
doi: 10.1002/advs.v9.4
|
[19] |
Rupp M, Tkatchenko A, Muller KR, von Lilienfeld OA. Fast and accurate modeling of molecular atomization energies with machine learning[J]. Phys Rev Lett, 2012, 108:058301.
doi: 10.1103/PhysRevLett.108.058301
|
[20] |
R. Carhart, Dennis H. Smith, and R. Venkataraghavan. Atom pairs as molecular features in structure-activity studies: definition and applications[J]. Journal of Chemi-cal Information and Computer Sciences, 1985, 25:64-73.
|
[21] |
Jörg Behler. Atom-centered symmetry functions for constructing high-dimensional neural network potentials[J]. Journal of Chemical Physics, 2011, 134(7):074106.
doi: 10.1063/1.3553717
|
[22] |
Artrith N, Urban A, Ceder G. Efficient and accurate ma-chine-learning interpolation of atomic energies in comp-ositions with many species[J]. Physical Review B, 2017, 96(1): 1-7.
|
[23] |
Han Wang, Linfeng Zhang, Jiequn Han, Weinan E. DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics[J]. Computer Physics Communications, 2018, 228:178-184.
doi: 10.1016/j.cpc.2018.03.016
|
[24] |
Xie T. and J.C. Grossman, Crystal graph convolutional neural networks for an accurate and interpretable pre-diction of material properties[J]. Physical review letters, 2018, 120(14): 145301.
doi: 10.1103/PhysRevLett.120.145301
|
[25] |
Li-Yuan Xue, Feng Guo, Yu-Shi Wen, et al. Reaxff-mpnn machine learning potential: a combination of reactive force field and message passing neural networks[J]. Physical Chemistry Chemical Physics, 2021, 23:19457-19464.
doi: 10.1039/d1cp01656c
pmid: 34524283
|
[26] |
Zhenqin Wu, Bharath Ramsundar, Evan N. Feinberg, et al. MoleculeNet: A benchmark for molecular machine learning[J]. Chemical Science, 2018, 9:513-530.
doi: 10.1039/c7sc02664a
pmid: 29629118
|
[27] |
Chi Chen, Weike Ye, Yunxing Zuo, et al. Graph net-works as a universal machine learning framework for molecules and crystals[J]. Chemistry of Materials, 2019, 31(9): 3564-3572.
doi: 10.1021/acs.chemmater.9b01294
|
[28] |
Jianjun Hu, Stanislav Stefanov, Yuqi Song, et al. Materia-lsAtlas.org: a materials informatics web app platform for materials discovery and survey of state-of-the art[J]. npj Computational Materials, 2022, 8:65.
doi: 10.1038/s41524-022-00750-6
|
[29] |
Zhiwei Liu, Jialong Guo, Ziyi Chen, et al. Swarm intelli-gence for new materials[J]. Computational Materials Science, 2022, 214:111699.
doi: 10.1016/j.commatsci.2022.111699
|
[30] |
Yingzong Liang, Mingwei Chen, Yanan Wang, et al. A universal model for accurately predicting the formation energy of inorganic compounds[J]. Science China Mat-erials, 2023, 66(1):343-351.
|
[31] |
Jialong Guo, Ziyi Chen, Zhiwei Liu, et al. Neural net-work training method for materials science based on multi-source databases[J]. Scientific Reports, 2022, 12: 15326.
doi: 10.1038/s41598-022-19426-8
pmid: 36096926
|