[1] |
习近平在第七十五届联合国大会一般性辩论上发表重要讲话[N]. 人民日报, 2020-09-23(001).
|
[2] |
郑逸璇, 宋晓晖, 周佳, 等. 减污降碳协同增效的关键路径与政策研究[J]. 中国环境管理, 2021, 13(05):45-51.
|
[3] |
Hasselmann K. Stochastic climate models part I[J]. The-ory. Tellus, 1976, 28(6): 473-485.
|
[4] |
Manabe S, Stouffer R J. Century-scale effects of increased atmospheric CO2 on the oceanatmosphere system[J]. Nature, 1993. 364(6434): 215-218.
doi: 10.1038/364215a0
|
[5] |
Byun Q W, Ching J K. Science algorithms of the EPA Models-3 Community Multiscale Air Quality (CMAQ) modeling system[R]. USA, Environmental Protection Agency, 1999.
|
[6] |
Grell G A, Peckham S E, Schmitz R, et al. Fully coup-led “online” chemistry within the WRF model[J]. Atmos-pheric Environmesnt, 2005, 39:6957-6975.
|
[7] |
Wang Z, Maeda T, Hayashi M, et al. A nested air quality prediction modeling system for urban and regional sca-les: application for highozone episode in Taiwan[J]. Water, Air, and Soil Pollution, 2001, 130:391-396.
doi: 10.1023/A:1013833217916
|
[8] |
王自发, 魏颖, 陈学舜, 等. 一个适用于地球系统模式(CAS-ESM)的在线气溶胶与大气化学分量模式(IAP-AACM)的发展与评估[J]. 气候与环境研究, 2020, 25(1): 1-1.
|
[9] |
刘丽, 王体健, 王勤耕. 区域复杂地形大气污染扩散的模拟研究[J]. 高原气象, 2008(5):1074-1082.
|
[10] |
吴剑斌, 王茜, 伏晴艳. 2013年12月上海市PM2.5重污染过程数值模拟研究[J]. 环境科学学报, 2016, 36(6): 2152-2159.
|
[11] |
皮冬勤, 陈焕盛, 魏巍, 等. 京津冀一次重污染过程的成因和来源[J]. 中国环境科学, 2019, 39(5):1899-1908.
|
[12] |
Candiani G, Carnevale C, Finzi G, et al. A comparison of reanalysis techniques: Ap-plying optimal interpolation and Ensemble Kalman Filtering to improve air quality monitoring at mesoscale[J]. Sci. Total Environ., 458: 7-14.
|
[13] |
Wu L, Mallet V, Bocquet M, et al. A comparison study of data assimilation algorithms for ozone forecasts[J]. Journal of Geophysical Research: Atmospheres, 2008, 113(D20).
|
[14] |
朱江, 唐晓, 王自发, 吴林. 大气污染资料同化与应用综述[J]. 大气科学, 2018, 42(3):607-620.
|
[15] |
王自发. 区域大气污染预报预警与应急控制[C]// 中华环保联合会(All-China Environment Federation)、联合国环境规划署第十届环境与发展论坛论文集.中华环保联合会(All-China Environment Federation)、联合国环境规划署, 2014:7.
|
[16] |
Tang X., Zhu J., Wang Z. F., et al. Inversion of CO emissions over Beijing and its surrounding areas with ensemble Kalman filter[J]. Atmospheric Environment, 2013, 81: 676-686.
doi: 10.1016/j.atmosenv.2013.08.051
|
[17] |
Wu L, Broquet G, Ciais P, et al. What would dense atmo-spheric observation networks bring to the quantification of city CO2 emissions?[J]. Atmospheric Chemistry and Physics, 2016, 16(12): 7743-7771.
|
[18] |
Wang H, Sui W, Tang X, et al. Simulation-based Design of Regional Emission Control Experiments with Simult-aneous Pollution of O3 and PM2.5 in Jinan, China[J]. Aerosol and Air Quality Research, 2019, 19(11): 2543-2556.
doi: 10.4209/aaqr.2019.03.0125
|
[19] |
Bai L, Wang J, Ma X, et al. Air Pollution Forecasts: An Overview[J]. Int J Environ Res Public Health, 2018, 15 (4):780.
doi: 10.3390/ijerph15040780
|
[20] |
Baklanov A, Zhang Y. Advances in air quality modeling and forecasting[J]. Global Transitions: 2020, 2:261-270.
|
[21] |
唐孝炎, 张远航, 邵敏. 大气环境化学-第2版[M]. 北京: 高等教育出版社, 2006:8-9.
|
[22] |
Reichstein M., et al. Deep learning and process under-standing for data-driven Earth system science[J]. Nature, 2019, 566(7743): 195-204.
doi: 10.1038/s41586-019-0912-1
|
[23] |
Ghahramani Z. Probabilistic machine learning and artif-icial intelligence[J]. Nature, 2015, 521: 452-459.
doi: 10.1038/nature14541
|
[24] |
Lecun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521:436-444.
doi: 10.1038/nature14539
|
[25] |
Bengio Y, Courville A, Vincent P. Representation lear-ning: A review and new perspectives[J]. IEEE transa-ctions on pattern analysis and machine intelligence, 2013, 35(8): 1798-1828.
|
[26] |
Liao Q, Zhu M, Wu L, et al. Deep learning for air quality forecasts: a review[J]. Current Pollution Reports, 2020, 6(4): 399-409.
doi: 10.1007/s40726-020-00159-z
|
[27] |
Wang Z, Li J, Wu L, et al. Deep learning-based gas-phase chemical kinetics kernel emulator: Application in a global air quality simulation case[J]. Frontiers in Environmental Science, 2022, 10: 955980.
doi: 10.3389/fenvs.2022.955980
|
[28] |
Li X, Peng L, Yao X, et al. Long short-term memory neural network for air pollutant concentration predictions: method development and evalua-tion[J]. Environ Pollut, 2017, 231:997-1004.
doi: 10.1016/j.envpol.2017.08.114
|
[29] |
Sayeed A, Lops Y, Choi Y, et al. Bias correcting and ex-tending the PM forecast by CMAQ up to 7 days using deep convolutional neural networks[J]. Atmospheric Environment, 2021, 253:118376.
doi: 10.1016/j.atmosenv.2021.118376
|
[30] |
He T L, Jones D, Miyazaki K, et al. Inverse modelling of Chinese NOx emissions using deep learning: integrating in situ observations with a satellite-based chemical reana-lysis[J]. Atmospheric Chemistry and Physics, 2022, 22 (21): 14059-14074.
|
[31] |
Huang L, Liu S, Yang Z, et al. Exploring deep learning for air pollutant emission estimation[J]. Geoscientific Model Development, 2021, 14(7): 4641-4654.
doi: 10.5194/gmd-14-4641-2021
|
[32] |
Brandt M, Tucker C J, Kariryaa A, et al. An unexpectedly large count of trees in the West African Sahara and Sahel[J]. Nature, 2020, 587(7832): 78-82.
doi: 10.1038/s41586-020-2824-5
|
[33] |
Dumont Le Brazidec J, Vanderbecken P, Farchi A, et al. Segmentation of XCO2 images with deep learning: application to synthetic plumes from cities and power plants[J]. Geoscientific Model Development Discussions, [preprint], in review, 2022.
|
[34] |
江峰琴. 美国环境空气质量监测数据管理经验及启示[J]. 环境与发展, 2015(3):40-43.
|
[35] |
Rémy S, Kipling Z, Flemming J, et al. Description and evaluation of the tropospheric aerosol scheme in the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecasting System (IFS-AER, cycle 45R1)[J]. Geoscientific Model Development, 2019, 12(11): 4627-4659.
doi: 10.5194/gmd-12-4627-2019
|
[36] |
Bao Y, Wu L, Jiang C, et al. A Cloud-Based Information System of Emission Inventory Compilation for Digital Governance of Urban Air Pollution and Carbon Man-agement[C]// 2021 IEEE 7th International Conference on Control Science and Systems Engineering (ICCSSE), IEEE, 2021: 273-277.
|
[37] |
Ren X, Zhao Y, Wu L, et al. Towards efficient digital governance of city air pollution using technique of big atmospheric environmental data[C]// IOP Conference Series: Earth and Environmental Science, IOP Publishing, 2020, 502(1): 012031.
|